See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 33f82a72ccefd5bf_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/33f82a72ccefd5bf_train_data.json
type:
field_instruction: prompt_source
field_output: response_model
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56/0cba69c7-4711-4b90-a2d9-02a22f069154
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 25
micro_batch_size: 1
mlflow_experiment_name: /tmp/33f82a72ccefd5bf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 3
sequence_len: 2028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 0cba69c7-4711-4b90-a2d9-02a22f069154
wandb_project: god
wandb_run: 8q1f
wandb_runid: 0cba69c7-4711-4b90-a2d9-02a22f069154
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
0cba69c7-4711-4b90-a2d9-02a22f069154
This model is a fine-tuned version of aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.4423 | 0.0000 | 1 | 9.1654 |
8.9115 | 0.0001 | 3 | 9.0982 |
8.2145 | 0.0002 | 6 | 8.0506 |
5.6599 | 0.0003 | 9 | 4.3642 |
2.5568 | 0.0004 | 12 | 2.2055 |
2.4366 | 0.0004 | 15 | 1.6779 |
0.8671 | 0.0005 | 18 | 1.1326 |
1.4519 | 0.0006 | 21 | 0.9818 |
1.3446 | 0.0007 | 24 | 0.9325 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 38
Model tree for sn56/0cba69c7-4711-4b90-a2d9-02a22f069154
Base model
meta-llama/Meta-Llama-3-8B-Instruct