Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 33f82a72ccefd5bf_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/33f82a72ccefd5bf_train_data.json
  type:
    field_instruction: prompt_source
    field_output: response_model
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56/0cba69c7-4711-4b90-a2d9-02a22f069154
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 25
micro_batch_size: 1
mlflow_experiment_name: /tmp/33f82a72ccefd5bf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 3
sequence_len: 2028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 0cba69c7-4711-4b90-a2d9-02a22f069154
wandb_project: god
wandb_run: 8q1f
wandb_runid: 0cba69c7-4711-4b90-a2d9-02a22f069154
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

0cba69c7-4711-4b90-a2d9-02a22f069154

This model is a fine-tuned version of aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9325

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
7.4423 0.0000 1 9.1654
8.9115 0.0001 3 9.0982
8.2145 0.0002 6 8.0506
5.6599 0.0003 9 4.3642
2.5568 0.0004 12 2.2055
2.4366 0.0004 15 1.6779
0.8671 0.0005 18 1.1326
1.4519 0.0006 21 0.9818
1.3446 0.0007 24 0.9325

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
38
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56/0cba69c7-4711-4b90-a2d9-02a22f069154