NLP2Linux / README.md
souvenger's picture
Add SetFit model
8f94f1b verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: Upgrade all installed packages with superuser privileges
  - text: Install package 'vim' as superuser
  - text: Remove package 'firefox' with superuser privileges
  - text: Change permissions of directory 'docs' to writable
  - text: Update package lists using superuser privileges
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
ls
  • 'List all files and directories'
  • 'Show files in the current directory'
  • 'Display contents of the current directory'
cd
  • 'Change to the specified directory'
  • 'Move to the home directory'
  • 'Navigate to the specified directory path'
mkdir docs
  • "Create a new directory named 'docs'"
mkdir projects
  • "Make a directory named 'projects'"
mkdir data
  • "Create a folder called 'data'"
mkdir images
  • "Make a directory named 'images'"
mkdir scripts
  • "Create a new folder named 'scripts'"
rm example.txt
  • "Remove the file named 'example.txt'"
rm temp.txt
  • "Delete the file called 'temp.txt'"
rm file1
  • "Remove the file named 'file1'"
rm file2
  • "Delete the file named 'file2'"
rm backup.txt
  • "Remove the file named 'backup.txt'"
cp file1 /destination
  • 'Copy file1 to directory /destination'
cp file2 /backup
  • 'Duplicate file2 to directory /backup'
cp file3 /archive
  • 'Copy file3 to folder /archive'
cp file4 /temp
  • 'Duplicate file4 to folder /temp'
cp file5 /images
  • 'Copy file5 to directory /images'
mv file2 /new_location
  • 'Move file2 to directory /new_location'
mv file3 /backup
  • 'Transfer file3 to directory /backup'
mv file4 /archive
  • 'Move file4 to folder /archive'
mv file5 /temp
  • 'Transfer file5 to folder /temp'
mv file6 /images
  • 'Move file6 to directory /images'
cat README.md
  • "Display the contents of file 'README.md'"
cat notes.txt
  • "Show the content of file 'notes.txt'"
cat data.csv
  • "Print the contents of file 'data.csv'"
cat script.sh
  • "Display the content of file 'script.sh'"
cat config.ini
  • "Show the contents of file 'config.ini'"
grep 'pattern' data.txt
  • "Search for 'pattern' in file 'data.txt'"
grep 'word' text.txt
  • "Find occurrences of 'word' in file 'text.txt'"
grep 'keyword' document.txt
  • "Search for 'keyword' in file 'document.txt'"

Evaluation

Metrics

Label Accuracy
all 0.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("souvenger/NLP2Linux")
# Run inference
preds = model("Install package 'vim' as superuser")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 5.6667 9
Label Training Sample Count
cat README.md 1
cat config.ini 1
cat data.csv 1
cat notes.txt 1
cat script.sh 1
cd 10
cp file1 /destination 1
cp file2 /backup 1
cp file3 /archive 1
cp file4 /temp 1
cp file5 /images 1
grep 'keyword' document.txt 1
grep 'pattern' data.txt 1
grep 'word' text.txt 1
ls 10
mkdir data 1
mkdir docs 1
mkdir images 1
mkdir projects 1
mkdir scripts 1
mv file2 /new_location 1
mv file3 /backup 1
mv file4 /archive 1
mv file5 /temp 1
mv file6 /images 1
rm backup.txt 1
rm example.txt 1
rm file1 1
rm file2 1
rm temp.txt 1

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0042 1 0.1215 -
0.2083 50 0.0232 -
0.4167 100 0.01 -
0.625 150 0.0044 -
0.8333 200 0.0025 -

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 2.3.1
  • Transformers: 4.37.0
  • PyTorch: 2.1.2
  • Datasets: 2.1.0
  • Tokenizers: 0.15.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}