|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: Upgrade all installed packages with superuser privileges |
|
- text: Install package 'vim' as superuser |
|
- text: Remove package 'firefox' with superuser privileges |
|
- text: Change permissions of directory 'docs' to writable |
|
- text: Update package lists using superuser privileges |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 30 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:----------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| ls | <ul><li>'List all files and directories'</li><li>'Show files in the current directory'</li><li>'Display contents of the current directory'</li></ul> | |
|
| cd | <ul><li>'Change to the specified directory'</li><li>'Move to the home directory'</li><li>'Navigate to the specified directory path'</li></ul> | |
|
| mkdir docs | <ul><li>"Create a new directory named 'docs'"</li></ul> | |
|
| mkdir projects | <ul><li>"Make a directory named 'projects'"</li></ul> | |
|
| mkdir data | <ul><li>"Create a folder called 'data'"</li></ul> | |
|
| mkdir images | <ul><li>"Make a directory named 'images'"</li></ul> | |
|
| mkdir scripts | <ul><li>"Create a new folder named 'scripts'"</li></ul> | |
|
| rm example.txt | <ul><li>"Remove the file named 'example.txt'"</li></ul> | |
|
| rm temp.txt | <ul><li>"Delete the file called 'temp.txt'"</li></ul> | |
|
| rm file1 | <ul><li>"Remove the file named 'file1'"</li></ul> | |
|
| rm file2 | <ul><li>"Delete the file named 'file2'"</li></ul> | |
|
| rm backup.txt | <ul><li>"Remove the file named 'backup.txt'"</li></ul> | |
|
| cp file1 /destination | <ul><li>'Copy file1 to directory /destination'</li></ul> | |
|
| cp file2 /backup | <ul><li>'Duplicate file2 to directory /backup'</li></ul> | |
|
| cp file3 /archive | <ul><li>'Copy file3 to folder /archive'</li></ul> | |
|
| cp file4 /temp | <ul><li>'Duplicate file4 to folder /temp'</li></ul> | |
|
| cp file5 /images | <ul><li>'Copy file5 to directory /images'</li></ul> | |
|
| mv file2 /new_location | <ul><li>'Move file2 to directory /new_location'</li></ul> | |
|
| mv file3 /backup | <ul><li>'Transfer file3 to directory /backup'</li></ul> | |
|
| mv file4 /archive | <ul><li>'Move file4 to folder /archive'</li></ul> | |
|
| mv file5 /temp | <ul><li>'Transfer file5 to folder /temp'</li></ul> | |
|
| mv file6 /images | <ul><li>'Move file6 to directory /images'</li></ul> | |
|
| cat README.md | <ul><li>"Display the contents of file 'README.md'"</li></ul> | |
|
| cat notes.txt | <ul><li>"Show the content of file 'notes.txt'"</li></ul> | |
|
| cat data.csv | <ul><li>"Print the contents of file 'data.csv'"</li></ul> | |
|
| cat script.sh | <ul><li>"Display the content of file 'script.sh'"</li></ul> | |
|
| cat config.ini | <ul><li>"Show the contents of file 'config.ini'"</li></ul> | |
|
| grep 'pattern' data.txt | <ul><li>"Search for 'pattern' in file 'data.txt'"</li></ul> | |
|
| grep 'word' text.txt | <ul><li>"Find occurrences of 'word' in file 'text.txt'"</li></ul> | |
|
| grep 'keyword' document.txt | <ul><li>"Search for 'keyword' in file 'document.txt'"</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("souvenger/NLP2Linux") |
|
# Run inference |
|
preds = model("Install package 'vim' as superuser") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 5 | 5.6667 | 9 | |
|
|
|
| Label | Training Sample Count | |
|
|:----------------------------|:----------------------| |
|
| cat README.md | 1 | |
|
| cat config.ini | 1 | |
|
| cat data.csv | 1 | |
|
| cat notes.txt | 1 | |
|
| cat script.sh | 1 | |
|
| cd | 10 | |
|
| cp file1 /destination | 1 | |
|
| cp file2 /backup | 1 | |
|
| cp file3 /archive | 1 | |
|
| cp file4 /temp | 1 | |
|
| cp file5 /images | 1 | |
|
| grep 'keyword' document.txt | 1 | |
|
| grep 'pattern' data.txt | 1 | |
|
| grep 'word' text.txt | 1 | |
|
| ls | 10 | |
|
| mkdir data | 1 | |
|
| mkdir docs | 1 | |
|
| mkdir images | 1 | |
|
| mkdir projects | 1 | |
|
| mkdir scripts | 1 | |
|
| mv file2 /new_location | 1 | |
|
| mv file3 /backup | 1 | |
|
| mv file4 /archive | 1 | |
|
| mv file5 /temp | 1 | |
|
| mv file6 /images | 1 | |
|
| rm backup.txt | 1 | |
|
| rm example.txt | 1 | |
|
| rm file1 | 1 | |
|
| rm file2 | 1 | |
|
| rm temp.txt | 1 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (8, 8) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0042 | 1 | 0.1215 | - | |
|
| 0.2083 | 50 | 0.0232 | - | |
|
| 0.4167 | 100 | 0.01 | - | |
|
| 0.625 | 150 | 0.0044 | - | |
|
| 0.8333 | 200 | 0.0025 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.3.1 |
|
- Transformers: 4.37.0 |
|
- PyTorch: 2.1.2 |
|
- Datasets: 2.1.0 |
|
- Tokenizers: 0.15.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |