File size: 2,872 Bytes
5971329
88142f2
5971329
 
b125ffc
 
 
5971329
b125ffc
5971329
136ac77
5971329
 
b125ffc
5971329
 
136ac77
 
132b5af
cdadc4f
 
 
2b8f874
 
 
5971329
cdadc4f
 
 
 
 
 
 
 
 
 
 
 
 
136ac77
cdadc4f
 
136ac77
cdadc4f
 
 
 
 
136ac77
cdadc4f
 
136ac77
b207167
 
136ac77
 
2b8f874
136ac77
 
 
 
 
 
99b7bd9
 
 
 
 
 
 
 
136ac77
 
 
 
 
fdc7694
136ac77
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
import os
import cv2
import numpy as np
import imutils
from keras.preprocessing.image import img_to_array
from keras.models import load_model

# Load the pre-trained models and define parameters
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml'
emotion_model_path = 'model4_0.83/model4_entire_model.h5'
face_detection = cv2.CascadeClassifier(detection_model_path)
emotion_classifier = load_model(emotion_model_path, compile=False)
EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown']


# face_detector_mtcnn = MTCNN()
classifier = load_model(emotion_model_path)

def predict_emotion(frame):
    frame = imutils.resize(frame, width=300)
    gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
    faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
                                            minNeighbors=5, minSize=(30, 30),
                                            flags=cv2.CASCADE_SCALE_IMAGE)

    frame_clone = frame.copy()
    if len(faces) > 0:
        faces = sorted(faces, reverse=True,
                       key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
        (fX, fY, fW, fH) = faces
        
        # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
        # the ROI for classification via the CNN
        roi = gray[fY:fY + fH, fX:fX + fW]
        roi = cv2.resize(roi, (48, 48))
        roi = roi.astype("float") / 255.0
        roi = img_to_array(roi)
        roi = np.expand_dims(roi, axis=0)

        preds = emotion_classifier.predict(roi)[0]
        label = EMOTIONS[preds.argmax()]

        # Overlay a box over the detected face
        cv2.putText(frame_clone, label, (fX, fY - 10),
                    cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1)
        cv2.rectangle(frame_clone, (fX, fY), (fX + fW, fY + fH),
                      (238, 164, 64), 2)

    else:
        label = "Can't find your face"

    return label




demo = gr.Interface(
    fn = predict_emotion,
    inputs = gr.Image(type="numpy"),
    outputs = gr.Label(num_top_classes=9),
    #flagging_options=["blurry", "incorrect", "other"],
    examples = [
        
        os.path.join(os.path.dirname(__file__), "images/chandler.jpeg"),
        os.path.join(os.path.dirname(__file__), "images/janice.jpeg"),
        os.path.join(os.path.dirname(__file__), "images/joey.jpeg"),
        os.path.join(os.path.dirname(__file__), "images/phoebe.jpeg"),
        os.path.join(os.path.dirname(__file__), "images/rachel_monica.jpeg"),
        os.path.join(os.path.dirname(__file__), "images/ross.jpeg"),
        os.path.join(os.path.dirname(__file__), "images/gunther.jpeg")
     
    ],
    title = "Whatchu feeling?",
    theme = "shivi/calm_seafoam"
)
    


if __name__ == "__main__":
    demo.launch()