File size: 17,629 Bytes
eac6bfb
 
612f2cd
 
 
 
 
 
eac6bfb
 
 
612f2cd
 
 
eac6bfb
612f2cd
 
15a2bb8
612f2cd
 
eac6bfb
15a2bb8
0788e60
09d69dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1081e
09d69dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1081e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706a649
58d0ab0
fb1081e
 
 
706a649
 
 
58d0ab0
333a57d
58d0ab0
 
 
 
 
 
706a649
 
58d0ab0
706a649
58d0ab0
 
 
333a57d
706a649
 
 
 
 
 
 
 
 
 
 
 
09d69dc
58d0ab0
09d69dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612f2cd
 
0788e60
eac6bfb
612f2cd
f5a37da
 
0788e60
612f2cd
f5a37da
 
0788e60
 
eac6bfb
15a2bb8
 
0788e60
eac6bfb
 
15a2bb8
0788e60
eac6bfb
 
 
 
15a2bb8
612f2cd
eac6bfb
 
 
0788e60
 
eac6bfb
15a2bb8
eac6bfb
 
 
 
 
 
 
 
 
 
 
 
 
612f2cd
eac6bfb
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612f2cd
 
eac6bfb
612f2cd
f5a37da
612f2cd
 
 
f5a37da
 
 
 
612f2cd
 
 
 
 
f5a37da
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612f2cd
881af71
 
 
 
 
 
 
fb1081e
881af71
 
 
 
 
 
 
 
fb1081e
881af71
 
 
 
 
 
 
 
 
612f2cd
881af71
 
 
 
 
 
 
 
 
 
 
fb1081e
881af71
 
 
 
 
 
 
 
 
612f2cd
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612f2cd
 
 
 
 
881af71
612f2cd
 
881af71
612f2cd
881af71
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# interface.py

# Importar 'spaces' y decoradores antes que cualquier biblioteca que pueda inicializar CUDA
from decorators import gpu_decorator

# Luego importar cualquier cosa relacionada con PyTorch o el modelo que va a usar la GPU
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
from sympy import symbols, lambdify, sympify

# Importar otras partes necesarias del c贸digo (config, etc.)
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE

# Cargar el modelo fuera de la funci贸n para evitar la inicializaci贸n innecesaria cada vez que se llame a la funci贸n
model_path = MODEL_PATH
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)

###############################


# bioprocess_model.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import seaborn as sns

class BioprocessModel:
    def __init__(self):
        self.params = {}
        self.r2 = {}
        self.rmse = {}
        self.datax = []
        self.datas = []
        self.datap = []
        self.dataxp = []
        self.datasp = []
        self.datapp = []
        self.datax_std = []
        self.datas_std = []
        self.datap_std = []
        self.models = {}  # Initialize the models dictionary

    @staticmethod
    def logistic(time, xo, xm, um):
        return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))

    @staticmethod
    def substrate(time, so, p, q, xo, xm, um):
        return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
               (q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))

    @staticmethod
    def product(time, po, alpha, beta, xo, xm, um):
        return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
               (beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))

    @staticmethod
    def logistic_diff(X, t, params):
        xo, xm, um = params
        dXdt = um * X * (1 - X / xm)
        return dXdt

    def substrate_diff(self, S, t, params, biomass_params, X_func):
        so, p, q = params
        xo, xm, um = biomass_params
        X_t = X_func(t)
        dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
        return dSdt

    def product_diff(self, P, t, params, biomass_params, X_func):
        po, alpha, beta = params
        xo, xm, um = biomass_params
        X_t = X_func(t)
        dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
        return dPdt

    def process_data(self, df):
        biomass_cols = [col for col in df.columns if 'Biomasa' in col]
        substrate_cols = [col for col in df.columns if 'Sustrato' in col]
        product_cols = [col for col in df.columns if 'Producto' in col]

        time_col = [col for col in df.columns if 'Tiempo' in col][0]
        time = df[time_col].values

        data_biomass = np.array([df[col].values for col in biomass_cols])
        self.datax.append(data_biomass)
        self.dataxp.append(np.mean(data_biomass, axis=0))
        self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))

        data_substrate = np.array([df[col].values for col in substrate_cols])
        self.datas.append(data_substrate)
        self.datasp.append(np.mean(data_substrate, axis=0))
        self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))

        data_product = np.array([df[col].values for col in product_cols])
        self.datap.append(data_product)
        self.datapp.append(np.mean(data_product, axis=0))
        self.datap_std.append(np.std(data_product, axis=0, ddof=1))

        self.time = time

    def set_model(self, model_type, equation, params_str):
        """
        Sets up the model based on the type, equation, and parameters.
        
        :param model_type: Type of the model ('biomass', 'substrate', 'product')
        :param equation: The equation as a string
        :param params_str: Comma-separated string of parameter names
        """
        t_symbol = symbols('t')
        expr = sympify(equation)
        params = [param.strip() for param in params_str.split(',')]
        params_symbols = symbols(params)
        
        if model_type == 'biomass':
            # Assuming biomass is a function of time only for logistic
            func_expr = expr
            func = lambdify(t_symbol, func_expr, 'numpy')
            self.models['biomass'] = {
                'function': func,
                'params': params
            }
        elif model_type in ['substrate', 'product']:
            # These models depend on biomass, which should already be set
            if 'biomass' not in self.models:
                raise ValueError("Biomass model must be set before substrate or product models.")
            biomass_func = self.models['biomass']['function']
            func_expr = expr.subs('X(t)', biomass_func(t_symbol))
            func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
            self.models[model_type] = {
                'function': func,
                'params': params
            }
        else:
            raise ValueError(f"Unsupported model type: {model_type}")

    def fit_model(self, model_type, time, data, bounds=([-np.inf], [np.inf])):
        """
        Fits the model to the data.
        
        :param model_type: Type of the model ('biomass', 'substrate', 'product')
        :param time: Time data
        :param data: Observed data to fit
        :param bounds: Bounds for the parameters
        :return: Predicted data from the model
        """
        if model_type not in self.models:
            raise ValueError(f"Model type '{model_type}' is not set. Please use set_model first.")
    
        # Funci贸n generada por lambdify
        func = self.models[model_type]['function']
        params = self.models[model_type]['params']
        
        # Depuraci贸n: Asegurarse de que los par谩metros est茅n bien definidos
        print(f"Fitting {model_type} model with function: {func} and parameters: {params}")
        
        # Definir la funci贸n de ajuste (asegurarse de que toma los par谩metros correctamente)
        def fit_func(t, *args):
            try:
                return func(t, *args)
            except Exception as e:
                print(f"Error in fit_func: {e}")
                raise
    
        # Depuraci贸n: Verificar el n煤mero de par谩metros que se espera ajustar
        print(f"Number of parameters to fit: {len(params)}")
    
        try:
            # Verifica que curve_fit puede recibir la funci贸n correctamente
            print(f"Calling curve_fit with time: {time}, data: {data}, bounds: {bounds}")
    
            # Intentar ajustar el modelo usando curve_fit
            popt, _ = curve_fit(fit_func, time, data, bounds=bounds, maxfev=10000)
            print(f"Optimal parameters found: {popt}")
    
            # Guardar los par谩metros ajustados en el modelo
            self.params[model_type] = {param: val for param, val in zip(params, popt)}
            y_pred = fit_func(time, *popt)
            self.r2[model_type] = 1 - (np.sum((data - y_pred) ** 2) / np.sum((data - np.mean(data)) ** 2))
            self.rmse[model_type] = np.sqrt(mean_squared_error(data, y_pred))
            return y_pred
        except Exception as e:
            print(f"Error while fitting {model_type} model: {str(e)}")
            raise


    def plot_combined_results(self, time, biomass, substrate, product,
                              y_pred_biomass, y_pred_substrate, y_pred_product,
                              biomass_std=None, substrate_std=None, product_std=None,
                              experiment_name='', legend_position='best', params_position='upper right',
                              show_legend=True, show_params=True,
                              style='whitegrid', line_color='#0000FF', point_color='#000000',
                              line_style='-', marker_style='o'):
        sns.set_style(style)

        fig, ax1 = plt.subplots(figsize=(10, 7))
        ax1.set_xlabel('Tiempo')
        ax1.set_ylabel('Biomasa', color=line_color)

        ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)')
        ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)')
        ax1.tick_params(axis='y', labelcolor=line_color)

        ax2 = ax1.twinx()
        ax2.set_ylabel('Sustrato', color='green')
        ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)')
        ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)')
        ax2.tick_params(axis='y', labelcolor='green')

        ax3 = ax1.twinx()
        ax3.spines["right"].set_position(("axes", 1.1))
        ax3.set_ylabel('Producto', color='red')
        ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)')
        ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)')
        ax3.tick_params(axis='y', labelcolor='red')

        fig.tight_layout()
        return fig



###############################

# Decorador GPU aplicado para manejar la ejecuci贸n en GPU si est谩 disponible
@gpu_decorator(duration=300)
def generate_analysis(prompt, max_length=1024, device=None):
    try:
        # Si el dispositivo no se especifica, usa CPU por defecto
        if device is None:
            device = torch.device('cpu')
        
        # Mover el modelo al dispositivo adecuado (GPU o CPU) si es necesario
        if next(model.parameters()).device != device:
            model.to(device)
        
        # Preparar los datos de entrada en el dispositivo correcto
        input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
        max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)

        # Generar el texto
        generated_ids = model.generate(
            input_ids=input_ids,
            max_length=max_gen_length,
            temperature=0.7,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            early_stopping=True
        )

        # Decodificar la respuesta generada
        output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        analysis = output_text[len(prompt):].strip()
        return analysis
    except RuntimeError as e:
        return f"Error durante la ejecuci贸n: {str(e)}"
    except Exception as e:
        return f"Ocurri贸 un error durante el an谩lisis: {e}"

def parse_bounds(bounds_str, num_params):
    try:
        bounds = eval(f"[{bounds_str}]")
        if len(bounds) != num_params:
            raise ValueError
        lower_bounds = [b[0] for b in bounds]
        upper_bounds = [b[1] for b in bounds]
        return lower_bounds, upper_bounds
    except:
        lower_bounds = [-np.inf] * num_params
        upper_bounds = [np.inf] * num_params
        return lower_bounds, upper_bounds

def process_and_plot(
    file,
    biomass_eq1, biomass_eq2, biomass_eq3,
    biomass_param1, biomass_param2, biomass_param3,
    biomass_bound1, biomass_bound2, biomass_bound3,
    substrate_eq1, substrate_eq2, substrate_eq3,
    substrate_param1, substrate_param2, substrate_param3,
    substrate_bound1, substrate_bound2, substrate_bound3,
    product_eq1, product_eq2, product_eq3,
    product_param1, product_param2, product_param3,
    product_bound1, product_bound2, product_bound3,
    legend_position,
    show_legend,
    show_params,
    biomass_eq_count,
    substrate_eq_count,
    product_eq_count,
    device=None
):
    # Leer el archivo Excel
    df = pd.read_excel(file.name)
    
    # Verificar que las columnas necesarias est茅n presentes
    expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
    for col in expected_columns:
        if col not in df.columns:
            raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")

    # Asignar los datos desde las columnas
    time = df['Tiempo'].values
    biomass_data = df['Biomasa'].values
    substrate_data = df['Sustrato'].values
    product_data = df['Producto'].values

    # Convierte los contadores a enteros
    biomass_eq_count = int(biomass_eq_count)
    substrate_eq_count = int(substrate_eq_count)
    product_eq_count = int(product_eq_count)

    # Recolecta las ecuaciones, par谩metros y l铆mites seg煤n los contadores
    biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
    biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
    biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]

    substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
    substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
    substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]

    product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
    product_params = [product_param1, product_param2, product_param3][:product_eq_count]
    product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]

    biomass_results = []
    substrate_results = []
    product_results = []

    # Ajusta los modelos de Biomasa
    for i in range(len(biomass_eqs)):
        equation = biomass_eqs[i]
        params_str = biomass_params[i]
        bounds_str = biomass_bounds[i]

        model = BioprocessModel()
        model.set_model('biomass', equation, params_str)

        params = [param.strip() for param in params_str.split(',')]
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'biomass', time, biomass_data,
            bounds=(lower_bounds, upper_bounds)
        )
        biomass_results.append({
            'model': model,
            'y_pred': y_pred,
            'equation': equation
        })

    # Usa el primer modelo de biomasa para X(t)
    biomass_model = biomass_results[0]['model']
    biomass_params_values = list(biomass_model.params['biomass'].values())
    biomass_func = biomass_model.models['biomass']['function']

    # Ajusta los modelos de Sustrato
    for i in range(len(substrate_eqs)):
        equation = substrate_eqs[i]
        params_str = substrate_params[i]
        bounds_str = substrate_bounds[i]

        model = BioprocessModel()
        model.set_model('substrate', equation, params_str)

        params = model.models['substrate']['params']
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'substrate', time, substrate_data,
            bounds=(lower_bounds, upper_bounds)
        )
        substrate_results.append({
            'model': model,
            'y_pred': y_pred,
            'equation': equation
        })

    # Ajusta los modelos de Producto
    for i in range(len(product_eqs)):
        equation = product_eqs[i]
        params_str = product_params[i]
        bounds_str = product_bounds[i]

        model = BioprocessModel()
        model.set_model('product', equation, params_str)

        params = model.models['product']['params']
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'product', time, product_data,
            bounds=(lower_bounds, upper_bounds)
        )
        product_results.append({
            'model': model,
            'y_pred': y_pred,
            'equation': equation
        })

    # Genera las gr谩ficas
    fig, axs = plt.subplots(3, 1, figsize=(10, 15))

    # Gr谩fica de Biomasa
    axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
    for i, result in enumerate(biomass_results):
        axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
    axs[0].set_xlabel('Tiempo')
    axs[0].set_ylabel('Biomasa')
    if show_legend:
        axs[0].legend(loc=legend_position)

    # Gr谩fica de Sustrato
    axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
    for i, result in enumerate(substrate_results):
        axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
    axs[1].set_xlabel('Tiempo')
    axs[1].set_ylabel('Sustrato')
    if show_legend:
        axs[1].legend(loc=legend_position)

    # Gr谩fica de Producto
    axs[2].plot(time, product_data, 'o', label='Datos de Producto')
    for i, result in enumerate(product_results):
        axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
    axs[2].set_xlabel('Tiempo')
    axs[2].set_ylabel('Producto')
    if show_legend:
        axs[2].legend(loc=legend_position)

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    image = Image.open(buf)

    prompt = f"""
Eres un experto en modelado de bioprocesos.

Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.

Biomasa:
{biomass_results}

Sustrato:
{substrate_results}

Producto:
{product_results}
"""
    analysis = generate_analysis(prompt, device=device)

    return [image], analysis