Spaces:
Running
Running
File size: 6,987 Bytes
d3b387e 4a4fa9d d29c5c7 737ac7d 00cde65 d29c5c7 737ac7d 5d0d515 7298d71 737ac7d 8bb37ad d29c5c7 63f3c1a d29c5c7 8bb37ad e42f58a 8bb37ad 4a4fa9d 8bb37ad d29c5c7 8bb37ad d29c5c7 00cde65 ae7c4ce d29c5c7 00cde65 7298d71 00cde65 4a4fa9d d29c5c7 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d 00cde65 4a4fa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import sentencepiece
import torch
import spaces
import gradio as gr
import os
from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import (
FluxControlNetInpaintPipeline,
)
from diffusers.models.controlnet_flux import FluxControlNetModel
from controlnet_aux import CannyDetector
# login hf token
HF_TOKEN = os.getenv("HF_TOKEN")
# print(HF_TOKEN)
# from huggingface_hub import login
#
# login()
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
controlnet = FluxControlNetModel.from_pretrained(
controlnet_model, torch_dtype=dtype
)
pipe = FluxControlNetInpaintPipeline.from_pretrained(
base_model, controlnet=controlnet, torch_dtype=dtype, device_map="auto"
).to(device)
pipe.enable_model_cpu_offload()
canny = CannyDetector()
@spaces.GPU(duration=160)
def inpaint(
image,
mask,
prompt,
strength,
num_inference_steps,
guidance_scale,
controlnet_conditioning_scale,
):
canny_image = canny(image)
image_res = pipe(
prompt,
image=image,
control_image=canny_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
mask_image=mask,
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
return image_res
with gr.Blocks() as demo:
# gr.LoginButton()
gr.Interface(
fn=inpaint,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Image(type="pil", label="Mask Image"),
gr.Textbox(label="Prompt"),
gr.Slider(0, 1, value=0.95, label="Strength"),
gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
gr.Slider(0, 20, value=5, label="Guidance Scale"),
gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
],
outputs=gr.Image(type="pil", label="Output Image"),
title="Flux Inpaint AI Model",
description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
)
demo.launch()
# import gradio as gr
# import numpy as np
# import random
# # import spaces
# import torch
# from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
# from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
# # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
#
# dtype = torch.bfloat16
# device = "cuda" if torch.cuda.is_available() else "cpu"
#
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
# torch.cuda.empty_cache()
#
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 2048
#
# # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
#
# # @spaces.GPU(duration=75)
# def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
#
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
# prompt=prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# output_type="pil",
# good_vae=good_vae,
# ):
# yield img, seed
#
# examples = [
# "a tiny astronaut hatching from an egg on the moon",
# "a cat holding a sign that says hello world",
# "an anime illustration of a wiener schnitzel",
# ]
#
# css="""
# #col-container {
# margin: 0 auto;
# max-width: 520px;
# }
# """
#
# with gr.Blocks(css=css) as demo:
#
# with gr.Column(elem_id="col-container"):
# gr.Markdown(f"""# FLUX.1 [dev]
# 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
# [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
# """)
#
# with gr.Row():
#
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
#
# run_button = gr.Button("Run", scale=0)
#
# result = gr.Image(label="Result", show_label=False)
#
# with gr.Accordion("Advanced Settings", open=False):
#
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
#
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
#
# with gr.Row():
#
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024,
# )
#
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024,
# )
#
# with gr.Row():
#
# guidance_scale = gr.Slider(
# label="Guidance Scale",
# minimum=1,
# maximum=15,
# step=0.1,
# value=3.5,
# )
#
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=50,
# step=1,
# value=28,
# )
#
# gr.Examples(
# examples = examples,
# fn = infer,
# inputs = [prompt],
# outputs = [result, seed],
# cache_examples="lazy"
# )
#
# gr.on(
# triggers=[run_button.click, prompt.submit],
# fn = infer,
# inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
# outputs = [result, seed]
# )
#
# demo.launch()
|