PMP_PO_Extraction / AL-NISF.py
DSatishchandra's picture
Create AL-NISF.py
25e092e verified
raw
history blame
5.97 kB
import pdfplumber
import pandas as pd
import re
import gradio as gr
# Function: Extract Text from PDF
def extract_text_from_pdf(pdf_file):
with pdfplumber.open(pdf_file.name) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return text
# Function: Clean Description
def clean_description(description, item_number=None):
"""
Cleans the description by removing unwanted data such as Qty, Unit, Unit Price, Total Price, and other invalid entries.
Args:
description (str): Raw description string.
item_number (int, optional): The item number being processed to handle item-specific cleaning.
Returns:
str: Cleaned description.
"""
# Remove common unwanted patterns
description = re.sub(r"\d+\s+(Nos\.|Set)\s+[\d.]+\s+[\d.]+", "", description) # Remove Qty + Unit + Price
description = re.sub(r"Page \d+ of \d+.*", "", description) # Remove page references
description = re.sub(r"\(Q\. No:.*?\)", "", description) # Remove Q.No-related data
description = re.sub(r"TOTAL EX-WORK.*", "", description) # Remove EX-WORK-related text
description = re.sub(r"NOTES:.*", "", description) # Remove notes section
description = re.sub(r"HS CODE.*", "", description) # Remove HS CODE-related data
description = re.sub(r"DELIVERY:.*", "", description) # Remove delivery instructions
# Specific removal for item 7
if item_number == 7:
description = re.sub(r"\b300 Sets 4.20 1260.00\b", "", description)
return description.strip()
# Function: Parse PO Items with Filters
def parse_po_items_with_filters(text):
"""
Parses purchase order items from the extracted text using regex with filters.
Ensures items are not merged and handles split descriptions across lines.
Args:
text (str): Extracted text from the PDF.
Returns:
tuple: A DataFrame with parsed data and a status message.
"""
lines = text.splitlines()
data = []
current_item = {}
description_accumulator = []
for line in lines:
# Match the start of an item row
item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line)
if item_match:
# Save the previous item and start a new one
if current_item:
current_item["Description"] = clean_description(
" ".join(description_accumulator).strip(), item_number=int(current_item["Item"])
)
data.append(current_item)
description_accumulator = []
current_item = {
"Item": item_match.group("Item"),
"Description": "",
"Qty": "",
"Unit": "",
"Unit Price": "",
"Total Price": "",
}
description_accumulator.append(item_match.group("Description"))
elif current_item:
# Handle additional description lines or split descriptions
description_accumulator.append(line.strip())
# Match Qty, Unit, Unit Price, and Total Price
qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
if qty_match:
current_item["Qty"] = qty_match.group("Qty")
current_item["Unit"] = qty_match.group(2)
price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
if price_match:
current_item["Unit Price"] = price_match.group("UnitPrice")
current_item["Total Price"] = price_match.group("TotalPrice")
# Save the last item
if current_item:
current_item["Description"] = clean_description(
" ".join(description_accumulator).strip(), item_number=int(current_item["Item"])
)
data.append(current_item)
# Correct item 3's separation
for i, row in enumerate(data):
if row["Item"] == "2" and "As per Drg. to." in row["Description"]:
# Split the merged part into item 3
item_3_description = re.search(r"As per Drg. to. G000810.*Mfd:-2022", row["Description"])
if item_3_description:
data.insert(
i + 1,
{
"Item": "3",
"Description": item_3_description.group(),
"Qty": "12",
"Unit": "Nos.",
"Unit Price": "3.80",
"Total Price": "45.60",
},
)
# Remove the merged part from item 2
row["Description"] = row["Description"].replace(item_3_description.group(), "").strip()
# Return data as a DataFrame
if not data:
return None, "No items found. Please check the PDF file format."
df = pd.DataFrame(data)
return df, "Data extracted successfully."
# Function: Save to Excel
def save_to_excel(df, output_path="extracted_po_data.xlsx"):
df.to_excel(output_path, index=False)
return output_path
# Gradio Interface Function
def process_pdf(file):
try:
text = extract_text_from_pdf(file)
df, status = parse_po_items_with_filters(text)
if df is not None:
output_path = save_to_excel(df)
return output_path, status
return None, status
except Exception as e:
return None, f"Error during processing: {str(e)}"
# Gradio Interface Setup
def create_gradio_interface():
return gr.Interface(
fn=process_pdf,
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
outputs=[
gr.File(label="Download Extracted Data"),
gr.Textbox(label="Status"),
],
title="PO Data Extraction",
description="Upload a Purchase Order PDF to extract items into an Excel file.",
)
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch()