File size: 16,053 Bytes
406922d
 
 
 
 
 
 
 
 
2b82929
853de85
406922d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439595
406922d
 
922691a
406922d
 
 
 
922691a
406922d
 
 
922691a
406922d
 
 
 
 
 
 
 
853de85
7babadc
 
4a1799c
f182a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406922d
 
 
 
ad1101d
 
 
 
 
220a9cc
12d9306
9236f5c
220a9cc
2d3e457
12d9306
 
f182a56
8c457ad
12d9306
220a9cc
 
12d9306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9236f5c
220a9cc
12d9306
220a9cc
 
 
12d9306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9236f5c
 
 
406922d
 
853de85
12d9306
853de85
29d63b3
3191bdf
2439595
 
 
 
 
853de85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f44fd
406922d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from data_manager import get_dog_description
from urllib.parse import quote

dog_breeds = ["Afghan_Hound(阿富汗獵犬)", "African_Hunting_Dog(非洲野犬)", "Airedale(艾爾谷犬)",
            "American_Staffordshire_Terrier(美國斯塔福郡梗)", "Appenzeller(亞賓澤爾犬)",
            "Australian_Terrier(澳大利亞梗)", "Bedlington_Terrier(貝德靈頓梗)",
            "Bernese_Mountain_Dog(伯恩山犬)", "Blenheim_Spaniel(布萊尼姆獵犬)",
            "Border_Collie(邊境牧羊犬)", "Border_Terrier(邊境梗)", "Boston_Bull(波士頓梗)",
            "Bouvier_Des_Flandres(法蘭德斯牧羊犬)", "Brabancon_Griffon(布魯塞爾格里芬犬)",
            "Brittany_Spaniel(布列塔尼獵犬)", "Cardigan(卡迪根威爾士柯基犬)",
            "Chesapeake_Bay_Retriever(切薩皮克灣獵犬)", "Chihuahua(吉娃娃)",
            "Dandie_Dinmont(丹第丁蒙梗)", "Doberman(杜賓犬)", "English_Foxhound(英國獵狐犬)",
            "English_Setter(英國雪達犬)", "English_Springer(英國跳獵犬)",
            "EntleBucher(恩特雷布赫山地犬)", "Eskimo_Dog(愛斯基摩犬)", "French_Bulldog(法國鬥牛犬)",
            "German_Shepherd(德國牧羊犬)", "German_Short-Haired_Pointer(德國短毛指示犬)",
            "Gordon_Setter(戈登雪達犬)", "Great_Dane(大丹犬)", "Great_Pyrenees(大白熊犬)",
            "Greater_Swiss_Mountain_Dog(大瑞士山地犬)", "Ibizan_Hound(依比沙獵犬)",
            "Irish_Setter(愛爾蘭雪達犬)", "Irish_Terrier(愛爾蘭梗)",
            "Irish_Water_Spaniel(愛爾蘭水獵犬)", "Irish_Wolfhound(愛爾蘭獵狼犬)",
            "Italian_Greyhound(義大利灰狗)", "Japanese_Spaniel(日本狆)",
            "Kerry_Blue_Terrier(凱利藍梗)", "Labrador_Retriever(拉布拉多尋回犬)",
            "Lakeland_Terrier(湖畔梗)", "Leonberg(獅毛狗)", "Lhasa(拉薩犬)",
            "Maltese_Dog(馬爾濟斯犬)", "Mexican_Hairless(墨西哥無毛犬)", "Newfoundland(紐芬蘭犬)",
            "Norfolk_Terrier(諾福克梗)", "Norwegian_Elkhound(挪威獵麋犬)",
            "Norwich_Terrier(諾利治梗)", "Old_English_Sheepdog(古代英國牧羊犬)",
            "Pekinese(北京犬)", "Pembroke(威爾士柯基犬)", "Pomeranian(博美犬)",
            "Rhodesian_Ridgeback(羅得西亞脊背犬)", "Rottweiler(羅威納犬)",
            "Saint_Bernard(聖伯納犬)", "Saluki(薩路基獵犬)", "Samoyed(薩摩耶犬)",
            "Scotch_Terrier(蘇格蘭梗)", "Scottish_Deerhound(蘇格蘭獵鹿犬)",
            "Sealyham_Terrier(錫利哈姆梗)", "Shetland_Sheepdog(設得蘭牧羊犬)",
            "Shih-Tzu(西施犬)", "Siberian_Husky(西伯利亞哈士奇)",
            "Staffordshire_Bullterrier(斯塔福郡鬥牛梗)", "Sussex_Spaniel(蘇塞克斯獵犬)",
            "Tibetan_Mastiff(藏獒)", "Tibetan_Terrier(西藏梗)", "Walker_Hound(沃克獵犬)",
            "Weimaraner(威瑪犬)", "Welsh_Springer_Spaniel(威爾士跳獵犬)",
            "West_Highland_White_Terrier(西高地白梗)", "Yorkshire_Terrier(約克夏梗)",
            "Affenpinscher(猴犬)", "Basenji(巴辛吉犬)", "Basset(巴吉度獵犬)", "Beagle(比格犬)",
            "Black-and-Tan_Coonhound(黑褐獵浣熊犬)", "Bloodhound(尋血獵犬)",
            "Bluetick(布魯提克獵犬)", "Borzoi(俄羅斯獵狼犬)", "Boxer(拳師犬)", "Briard(布里亞犬)",
            "Bull_Mastiff(獒犬)", "Cairn(凱恩梗)", "Chow(鬆獅犬)", "Clumber(克倫伯獵犬)",
            "Cocker_Spaniel(可卡獵犬)", "Collie(柯利牧羊犬)", "Curly-Coated_Retriever(捲毛尋回犬)",
            "Dhole(豺)", "Dingo(澳洲野犬)", "Flat-Coated_Retriever(平毛尋回犬)",
            "Giant_Schnauzer(大型雪納瑞犬)", "Golden_Retriever(黃金獵犬)",
            "Groenendael(比利時牧羊犬)", "Keeshond(荷蘭毛獅犬)", "Kelpie(澳洲卡爾比犬)",
            "Komondor(匈牙利牧羊犬)", "Kuvasz(庫瓦茲犬)", "Malamute(阿拉斯加雪橇犬)",
            "Malinois(比利時瑪利諾犬)", "Miniature_Pinscher(迷你杜賓犬)",
            "Miniature_Poodle(迷你貴賓犬)", "Miniature_Schnauzer(迷你雪納瑞犬)",
            "Otterhound(水獺獵犬)", "Papillon(蝴蝶犬)", "Pug(巴哥犬)", "Redbone(紅骨獵浣熊犬)",
            "Schipperke(舒柏奇犬)", "Silky_Terrier(絲毛梗)",
            "Soft-Coated_Wheaten_Terrier(愛爾蘭軟毛梗)", "Standard_Poodle(標準貴賓犬)",
            "Standard_Schnauzer(標準雪納瑞犬)", "Toy_Poodle(玩具貴賓犬)", "Toy_Terrier(玩具梗)",
            "Vizsla(維茲拉犬)", "Whippet(惠比特犬)", "Wire-Haired_Fox_Terrier(硬毛獵狐梗)"]

class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)

checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

# evaluation mode
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)


def get_akc_breeds_link():
    return "https://www.akc.org/dog-breeds/"

# def predict(image):
#     try:
#         image_tensor = preprocess_image(image)
#         with torch.no_grad():
#             output = model(image_tensor)
#             if isinstance(output, tuple):
#                 logits = output[0]
#             else:
#                 logits = output

#             # 取得預測的top k結果
#             probabilities = F.softmax(logits, dim=1)
#             topk_probs, topk_indices = torch.topk(probabilities, k=3)

#             # 檢查最高的預測機率
#             top1_prob = topk_probs[0][0].item()

#             if top1_prob >= 0.5:
#                 # 正確辨識時,返回該品種資訊
#                 predicted = topk_indices[0][0]
#                 breed = dog_breeds[predicted.item()]
#                 description = get_dog_description(breed)
#                 akc_link = get_akc_breeds_link()

#                 if isinstance(description, dict):
#                     description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
#                 else:
#                     description_str = description

#                 # 添加AKC連結
#                 description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."

#                 # 添加免責聲明
#                 disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
#                               "You may need to search for the specific breed on that page. "
#                               "I am not responsible for the content on external sites. "
#                               "Please refer to the AKC's terms of use and privacy policy.*")
#                 description_str += disclaimer

#                 return description_str

#             else:
#                 # 不確定時,返回top 3的預測結果
#                 topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
#                 topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]

#                 # 用粗體返回品種和機率
#                 topk_results = "\n\n".join([f"**{i+1}. {breed}** ({prob} confidence)" for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))])

#                 # 提供說明
#                 explanation = (
#                     f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n{topk_results}\n\n"
#                     "This can happen if the image quality is low or the breed is rare in the dataset. "
#                     "Please try uploading a clearer image or a different angle of the dog. "
#                     "For more accurate results, ensure the dog is the main subject of the photo."
#                 )

#                 return explanation
#     except Exception as e:
#         return f"An error occurred: {e}"

def predict(image):
    try:
        image_tensor = preprocess_image(image)
        with torch.no_grad():
            output = model(image_tensor)
            if isinstance(output, tuple):
                logits = output[0]
            else:
                logits = output

            # 取得預測的top k結果
            probabilities = F.softmax(logits, dim=1)
            topk_probs, topk_indices = torch.topk(probabilities, k=3)

            # 檢查最高的預測機率
            top1_prob = topk_probs[0][0].item()

            if top1_prob >= 0.5:
                # 正確辨識時,返回該品種資訊
                predicted = topk_indices[0][0]
                breed = dog_breeds[predicted.item()]
                description = get_dog_description(breed)
                akc_link = get_akc_breeds_link()

                if isinstance(description, dict):
                    description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
                else:
                    description_str = description

                # 添加AKC連結
                description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."

                # 添加免責聲明
                disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
                              "You may need to search for the specific breed on that page. "
                              "I am not responsible for the content on external sites. "
                              "Please refer to the AKC's terms of use and privacy policy.*")
                description_str += disclaimer

                return description_str

            elif top1_prob < 0.1:
                # 如果信心度低於 0.1,返回提示請上傳更清晰的圖片
                return "The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog."

            else:
                # 不確定時,返回top 3的預測結果,並且允許點擊查看詳細資訊
                topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
                topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]

                # 用粗體返回品種和機率,並為每個品種添加點擊連結
                topk_results = "\n\n".join([
                    f"**{i+1}. [Click here to view more about {breed}]()** ({prob} confidence)" 
                    for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))
                ])

                # 提供說明
                explanation = (
                    f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n{topk_results}\n\n"
                    "This can happen if the image quality is low or the breed is rare in the dataset. "
                    "Please try uploading a clearer image or a different angle of the dog. "
                    "For more accurate results, ensure the dog is the main subject of the photo."
                )

                return explanation
    except Exception as e:
        return f"An error occurred: {e}"

iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(label="Upload a dog image", type="numpy"),
    outputs=gr.Markdown(label="Prediction Results"),
    title="<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>",
    article= 'For more details on this project and other work, feel free to visit my GitHub [Dog Breed Classifier](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier)',
    description="<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and model will predict its breed, provide detailed information, and include an extra information link!</p>",
    examples=['Border_Collie.jpg',
              'Golden_Retriever.jpeg',
              'Saint_Bernard.jpeg',
              'French_Bulldog.jpeg',
              'Samoyed.jpg'],
     css = """
    .container {
        max-width: 900px;
        margin: 0 auto;
        padding: 20px;
        background-color: rgba(255, 255, 255, 0.9);
        border-radius: 15px;
        box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
    }
    
    .gr-form {
        display: flex;
        flex-direction: column;
        align-items: center;
    }
    
    .gr-box {
        width: 100%;
        max-width: 500px;
    }
    
    .output-markdown, .output-image {
        margin-top: 20px;
        padding: 15px;
        background-color: #f5f5f5;
        border-radius: 10px;
    }
    
    .examples {
        display: flex;
        justify-content: center;
        flex-wrap: wrap;
        gap: 10px;
        margin-top: 20px;
    }
    
    .examples img {
        width: 100px;
        height: 100px;
        object-fit: cover;
    }
    """,
    theme='default')



# Launch the app
if __name__ == "__main__":
    iface.launch()