File size: 23,017 Bytes
4c0eddb
eea2731
2bb0b78
6045345
 
 
2bb0b78
6045345
488a67d
2bb0b78
 
 
 
 
 
 
8d43785
2809f3f
6045345
37293dc
4ea9a66
6045345
37293dc
6045345
37293dc
 
6045345
37293dc
6045345
cf68153
1365073
6045345
 
 
37293dc
6045345
cf68153
37293dc
1365073
37293dc
 
ce34d64
6045345
fc2d6be
2e22404
 
 
 
6045345
553a86b
2e22404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553a86b
6045345
ce34d64
 
 
2809f3f
6045345
a1f9850
6045345
4a17a4c
cb7cd34
 
392dfd9
 
cb7cd34
 
6045345
 
 
 
 
 
 
 
1d5ab84
1c33eb8
1d5ab84
 
ce34d64
37293dc
 
ce34d64
607a4d3
a1f9850
1d5ab84
6045345
1d5ab84
 
 
553a86b
6045345
553a86b
6045345
553a86b
 
2cfe9e9
 
 
 
553a86b
2cfe9e9
 
6045345
cb7cd34
6045345
a4f1241
6045345
 
37293dc
 
88089e8
37293dc
 
 
6045345
 
 
 
 
9bdd30c
 
 
2bb0b78
9bdd30c
 
88089e8
9bdd30c
 
 
 
 
 
 
88089e8
9bdd30c
 
 
 
 
 
 
 
6045345
88089e8
 
 
 
 
 
 
6045345
2bc1a5b
37293dc
 
 
2bc1a5b
88089e8
 
 
8d43785
392dfd9
e8aacfb
 
2e56203
2cfe9e9
392dfd9
 
2e56203
2cfe9e9
1d5ab84
4ea9a66
1d5ab84
 
2e56203
 
ce34d64
2e56203
4ea9a66
 
6045345
ce34d64
 
 
 
6045345
2e56203
6045345
1d5ab84
b46bc02
ce34d64
 
 
 
b46bc02
2e56203
b46bc02
1d5ab84
1365073
ce34d64
 
 
 
1365073
2e56203
1365073
1d5ab84
1365073
ce34d64
 
 
 
1365073
2e56203
1365073
1d5ab84
a12fb0a
ce34d64
 
 
 
a12fb0a
2e56203
a12fb0a
1d5ab84
6045345
ce34d64
 
 
 
6045345
2e56203
6045345
1d5ab84
6045345
1d5ab84
6045345
 
 
 
2e56203
6045345
1d5ab84
6045345
1d5ab84
6045345
 
 
 
2e56203
6045345
1d5ab84
6045345
ce34d64
 
 
 
6045345
2e56203
6045345
1d5ab84
cf68153
 
 
 
 
 
2e56203
cf68153
6045345
aac4b76
 
 
b1f4f7a
aac4b76
 
 
2bb0b78
 
fe28543
2bb0b78
 
 
6045345
b1f4f7a
6045345
1d5ab84
553a86b
1d5ab84
 
ce34d64
 
 
6045345
aa3c3f9
 
 
ce34d64
37293dc
 
 
392dfd9
aa3c3f9
 
 
 
 
 
 
2809f3f
4a17a4c
aa3c3f9
1d5ab84
aa3c3f9
a1f9850
aa3c3f9
 
cb7cd34
 
 
 
392dfd9
 
cb7cd34
 
aa3c3f9
 
 
 
 
 
 
 
 
1d5ab84
1c33eb8
1d5ab84
 
553a86b
98a6781
1d5ab84
ce34d64
b832a0a
 
ce34d64
607a4d3
a1f9850
1d5ab84
 
 
 
 
553a86b
aa3c3f9
 
 
553a86b
2809f3f
553a86b
2809f3f
 
ce34d64
 
 
aa3c3f9
 
 
 
 
1d5ab84
 
 
aa3c3f9
 
 
 
 
b1f4f7a
cb7cd34
aa3c3f9
0d28df0
2bb0b78
0d28df0
 
 
 
3392270
cb7cd34
 
 
0d28df0
 
 
aa3c3f9
553a86b
aa3c3f9
 
 
1d5ab84
553a86b
1d5ab84
 
ce34d64
37293dc
 
ce34d64
aa3c3f9
 
 
4a17a4c
aa3c3f9
097d367
553a86b
2bc1a5b
 
 
37293dc
 
2bc1a5b
097d367
ab5cd28
2bb0b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc2d6be
2bb0b78
 
 
 
 
 
 
 
ab5cd28
 
 
 
 
6045345
 
488a67d
 
eea2731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553a86b
eea2731
488a67d
 
0c6f928
eea2731
 
0c6f928
eea2731
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
"""Module containing data utilities"""
import functools
import hashlib
import logging
from hashlib import md5
from pathlib import Path
from typing import Tuple, Union

import torch
from datasets import (
    Dataset,
    DatasetDict,
    concatenate_datasets,
    load_dataset,
    load_from_disk,
)
from huggingface_hub import hf_hub_download
from transformers import PreTrainedTokenizerBase

from axolotl.datasets import ConstantLengthDataset, TokenizedPromptDataset
from axolotl.prompt_strategies import load
from axolotl.prompt_tokenizers import (
    AlpacaMultipleChoicePromptTokenizingStrategy,
    AlpacaPromptTokenizingStrategy,
    AlpacaReflectionPTStrategy,
    CompletionPromptTokenizingStrategy,
    GPTeacherPromptTokenizingStrategy,
    JeopardyPromptTokenizingStrategy,
    OpenAssistantPromptTokenizingStrategy,
    ShareGPTPromptTokenizingStrategy,
    SummarizeTLDRPromptTokenizingStrategy,
)
from axolotl.prompters import (
    AlpacaPrompter,
    CompletionPrompter,
    GPTeacherPrompter,
    JeopardyPrompter,
    MultipleChoiceConcisePrompter,
    MultipleChoiceExplainPrompter,
    ReflectAlpacaPrompter,
    ShareGPTPrompter,
    SummarizeTLDRPrompter,
)
from axolotl.utils.distributed import is_main_process, zero_first
from axolotl.utils.trainer import (
    calculate_total_num_steps,
    process_datasets_for_packing,
)

LOG = logging.getLogger("axolotl")
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"


def prepare_dataset(cfg, tokenizer):
    if not cfg.pretraining_dataset:
        train_dataset, eval_dataset = load_prepare_datasets(
            tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
        )
    else:
        train_dataset = load_pretraining_dataset(
            cfg.pretraining_dataset,
            tokenizer,
            max_tokens=cfg.sequence_len,
            seed=cfg.seed or 42,
        )
        # https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
        train_dataset = train_dataset.with_format("torch")
        eval_dataset = None

    with zero_first(is_main_process()):
        train_dataset, eval_dataset = process_datasets_for_packing(
            cfg, train_dataset, eval_dataset
        )
    if cfg.max_steps:
        total_num_steps = min(
            calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps
        )
        LOG.info(f"Maximum number of steps set at {total_num_steps}")
    else:
        total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer)
    return train_dataset, eval_dataset, total_num_steps


def load_tokenized_prepared_datasets(
    tokenizer, cfg, default_dataset_prepared_path
) -> DatasetDict:
    tokenizer_name = tokenizer.__class__.__name__
    ds_hash = str(
        md5(  # nosec
            (
                str(cfg.sequence_len)
                + "@"
                + "|".join(
                    sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
                )
                + "|"
                + tokenizer_name
            ).encode("utf-8")
        ).hexdigest()
    )
    prepared_ds_path = (
        Path(cfg.dataset_prepared_path) / ds_hash
        if cfg.dataset_prepared_path
        else Path(default_dataset_prepared_path) / ds_hash
    )
    dataset = None
    use_auth_token = cfg.hf_use_auth_token
    try:
        if cfg.push_dataset_to_hub:
            dataset = load_dataset(
                f"{cfg.push_dataset_to_hub}/{ds_hash}",
                use_auth_token=use_auth_token,
            )
            dataset = dataset["train"]
    except Exception:  # pylint: disable=broad-except # nosec
        pass

    if dataset:
        ...
    elif any(prepared_ds_path.glob("*")):
        LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
        dataset = load_from_disk(str(prepared_ds_path))
        LOG.info("Prepared dataset loaded from disk...")
    else:
        LOG.info(f"Unable to find prepared dataset in {prepared_ds_path}")
        LOG.info("Loading raw datasets...")

        if cfg.seed:
            seed = cfg.seed
        else:
            LOG.info("No seed provided, using default seed of 42")
            seed = 42

        datasets = []
        # pylint: disable=invalid-name
        for d in cfg.datasets:
            ds: Union[Dataset, DatasetDict] = None
            ds_from_hub = False
            try:
                load_dataset(
                    d.path,
                    name=d.name,
                    streaming=True,
                    use_auth_token=use_auth_token,
                )
                ds_from_hub = True
            except FileNotFoundError:
                pass

            # prefer local dataset, even if hub exists
            local_path = Path(d.path)
            if local_path.exists():
                if local_path.is_dir():
                    # TODO dirs with arrow or parquet files could be loaded with `load_from_disk`
                    ds = load_dataset(
                        d.path,
                        name=d.name,
                        data_files=d.data_files,
                        streaming=False,
                        split=None,
                    )
                elif local_path.is_file():
                    ds = load_dataset(
                        "json",
                        name=d.name,
                        data_files=d.path,
                        streaming=False,
                        split=None,
                    )
                else:
                    raise ValueError(
                        "unhandled dataset load: local path exists, but is neither a directory or a file"
                    )
            elif ds_from_hub:
                ds = load_dataset(
                    d.path,
                    name=d.name,
                    streaming=False,
                    data_files=d.data_files,
                    use_auth_token=use_auth_token,
                )
            else:
                fp = hf_hub_download(
                    repo_id=d.path,
                    repo_type="dataset",
                    filename=d.data_files,
                )
                ds = load_dataset(
                    "json", name=d.name, data_files=fp, streaming=False, split=None
                )
            if not ds:
                raise ValueError("unhandled dataset load")
            # support for using a subset of the data
            if d.shards:
                if "train" in ds:
                    ds = ds.shuffle(seed=seed)["train"].shard(
                        num_shards=d.shards, index=0
                    )
                else:
                    ds = ds.shuffle(seed=seed).shard(num_shards=d.shards, index=0)
            d_type = d.type
            d_type_split = d_type.split(":")
            d_base_type = d_type_split[0]
            d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
            if "train" in ds:
                ds = ds["train"]
            if ds_strategy := load(d.type, tokenizer, cfg):
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "alpaca":
                ds_strategy = AlpacaPromptTokenizingStrategy(
                    AlpacaPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "explainchoice":
                ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
                    MultipleChoiceExplainPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "concisechoice":
                ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
                    MultipleChoiceConcisePrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "summarizetldr":
                ds_strategy = SummarizeTLDRPromptTokenizingStrategy(
                    SummarizeTLDRPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "jeopardy":
                ds_strategy = JeopardyPromptTokenizingStrategy(
                    JeopardyPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "oasst":
                ds_strategy = OpenAssistantPromptTokenizingStrategy(
                    AlpacaPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "gpteacher":
                ds_strategy = GPTeacherPromptTokenizingStrategy(
                    GPTeacherPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "reflection":
                ds_strategy = AlpacaReflectionPTStrategy(
                    ReflectAlpacaPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "sharegpt":
                ds_strategy = ShareGPTPromptTokenizingStrategy(
                    ShareGPTPrompter(d_prompt_style),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            elif d_base_type == "completion":
                ds_strategy = CompletionPromptTokenizingStrategy(
                    CompletionPrompter(),
                    tokenizer,
                    cfg.train_on_inputs,
                    cfg.sequence_len,
                )
                ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
                datasets.append(ds_wrapper)
            else:
                suffix = ""
                if ":load_" in d.type:
                    suffix = f" Did you mean {d.type.replace(':load_', '.load_')}?"
                LOG.error(f"unhandled prompt tokenization strategy: {d.type}. {suffix}")
                raise ValueError(
                    f"unhandled prompt tokenization strategy: {d.type} {suffix}"
                )
        LOG.info("merging datasets")
        dataset = concatenate_datasets(datasets)

        if len(datasets) > 1:
            LOG.info("shuffle merged datasets")
            dataset = dataset.shuffle(seed=seed)
        if cfg.local_rank == 0:
            LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
            dataset.save_to_disk(prepared_ds_path)
            if cfg.push_dataset_to_hub:
                LOG.info(
                    f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                )
                dataset.push_to_hub(
                    f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
                )

    return dataset


def load_prepare_datasets(
    tokenizer: PreTrainedTokenizerBase,
    cfg,
    default_dataset_prepared_path,
) -> Tuple[Dataset, Dataset]:
    max_packed_sequence_len = (
        cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
    )
    max_packed_sequence_len = min(
        max_packed_sequence_len, cfg.sequence_len
    )  # make sure we don't accidentally set it larger than sequence_len

    tokenizer_name = tokenizer.__class__.__name__
    if cfg.max_packed_sequence_len is not None:
        # see if we can go ahead and load the stacked dataset
        seed = f"@{str(cfg.seed)}" if cfg.seed else ""
        ds_hash = str(
            md5(  # nosec
                (
                    str(cfg.sequence_len)
                    + "@"
                    + str(max_packed_sequence_len)
                    + seed
                    + "|".join(
                        sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
                    )
                    + "|"
                    + tokenizer_name
                ).encode("utf-8")
            ).hexdigest()
        )
        prepared_ds_path = (
            Path(cfg.dataset_prepared_path) / ds_hash
            if cfg.dataset_prepared_path
            else Path(default_dataset_prepared_path) / ds_hash
        )

        dataset = None
        use_auth_token = cfg.hf_use_auth_token
        try:
            if cfg.push_dataset_to_hub:
                LOG.info(
                    f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                )
                dataset = load_dataset(
                    f"{cfg.push_dataset_to_hub}/{ds_hash}",
                    use_auth_token=use_auth_token,
                )
                dataset = dataset["train"]
        except Exception:  # pylint: disable=broad-except # nosec
            pass

        if dataset:
            ...
        elif any(prepared_ds_path.glob("*")):
            LOG.info(
                f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
            )
            dataset = load_from_disk(str(prepared_ds_path))
            LOG.info("Prepared packed dataset loaded from disk...")
            if cfg.push_dataset_to_hub:
                LOG.info(
                    f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                )
                dataset.push_to_hub(
                    f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
                )
        else:
            dataset = load_tokenized_prepared_datasets(
                tokenizer, cfg, default_dataset_prepared_path
            )

            if cfg.seed:
                dataset = dataset.shuffle(seed=cfg.seed)

            constant_len_dataset = ConstantLengthDataset(
                tokenizer,
                [dataset],
                seq_length=max_packed_sequence_len,
            )
            LOG.info(f"packing master dataset to len: {cfg.max_packed_sequence_len}")
            dataset = Dataset.from_list(list(constant_len_dataset))

            # filter out bad data
            # TODO convert to dataset.filter(...)
            dataset = Dataset.from_list(
                [
                    d
                    for d in dataset
                    if len(d["input_ids"]) <= cfg.sequence_len
                    and len(d["input_ids"]) > 0
                    and len(d["input_ids"]) == len(d["attention_mask"])
                    and len(d["input_ids"]) == len(d["labels"])
                ]
            )

            if cfg.local_rank == 0:
                LOG.info(
                    f"Saving packed prepared dataset to disk... {prepared_ds_path}"
                )
                dataset.save_to_disk(prepared_ds_path)
                if cfg.push_dataset_to_hub:
                    LOG.info(
                        f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
                    )
                    dataset.push_to_hub(
                        f"{cfg.push_dataset_to_hub}/{ds_hash}",
                        private=True,
                    )
    else:
        dataset = load_tokenized_prepared_datasets(
            tokenizer, cfg, default_dataset_prepared_path
        )

    if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
        LOG.info(
            f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
        )
        dataset = dataset.shard(
            num_shards=cfg.dataset_shard_num,
            index=cfg.dataset_shard_idx,
        )

    if cfg.val_set_size:
        # ensure we end up with the same fingerprint by doing rank0 first and being able to cache
        to_hash_train = (
            dataset._fingerprint  # pylint: disable=protected-access
            + "|"
            + str(cfg.val_set_size)
            + "|"
            + "train"
            + "|"
            + str(cfg.seed or 42)
        )
        to_hash_test = (
            dataset._fingerprint  # pylint: disable=protected-access
            + "|"
            + str(cfg.val_set_size)
            + "|"
            + "test"
            + "|"
            + str(cfg.seed or 42)
        )
        train_fingerprint = hashlib.md5(
            to_hash_train.encode(), usedforsecurity=False
        ).hexdigest()
        test_fingerprint = hashlib.md5(
            to_hash_test.encode(), usedforsecurity=False
        ).hexdigest()

        with zero_first(is_main_process()):
            dataset = dataset.train_test_split(
                test_size=cfg.val_set_size,
                shuffle=False,
                seed=cfg.seed or 42,
                train_new_fingerprint=train_fingerprint,
                test_new_fingerprint=test_fingerprint,
            )

        train_dataset = dataset["train"]
        eval_dataset = dataset["test"]
    else:
        train_dataset = dataset
        eval_dataset = None

    return train_dataset, eval_dataset


def encode_pretraining(tokenizer, max_tokens, examples):
    res = tokenizer(
        examples["text"],
        truncation=True,
        max_length=max_tokens - 2,
        add_special_tokens=True,
    )
    # Convert to PyTorch tensors
    input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
    attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
    new_input_ids = []
    new_attention_mask = []
    # Append EOS and PAD tokens to input_ids, and correct attention_mask
    for i, _ in enumerate(input_ids):
        input_ids[i] = torch.cat(
            (
                input_ids[i],
                torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
            ),
            dim=0,
        )
        attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)

    # Concatenate tokens so that their lengths are less than max_tokens
    buffer_input_ids = torch.tensor([], dtype=torch.long)
    buffer_attention_mask = torch.tensor([], dtype=torch.long)

    for ids, mask in zip(input_ids, attention_mask):
        if buffer_input_ids.numel() == max_tokens:
            new_input_ids.append(buffer_input_ids)
            new_attention_mask.append(buffer_attention_mask)
            buffer_input_ids = torch.tensor([], dtype=torch.long)
            buffer_attention_mask = torch.tensor([], dtype=torch.long)
            buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
            buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
        elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
            buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
            buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
        else:
            buffer_input_ids = torch.cat(
                (
                    buffer_input_ids,
                    torch.full(
                        (max_tokens - buffer_input_ids.numel(),),
                        tokenizer.pad_token_id,
                        dtype=torch.long,
                    ),
                ),
                dim=0,
            )
            buffer_attention_mask = torch.cat(
                (
                    buffer_attention_mask,
                    torch.full(
                        (max_tokens - buffer_attention_mask.numel(),),
                        0,
                        dtype=torch.long,
                    ),
                ),
                dim=0,
            )
            new_input_ids.append(buffer_input_ids)
            new_attention_mask.append(buffer_attention_mask)
            buffer_input_ids = torch.tensor([], dtype=torch.long)
            buffer_attention_mask = torch.tensor([], dtype=torch.long)

            buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
            buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)

    if buffer_input_ids.numel() > 0:  # for any leftover tokens
        while buffer_input_ids.numel() < max_tokens:  # make all sequences equal in size
            buffer_input_ids = torch.cat(
                (
                    buffer_input_ids,
                    torch.full(
                        (max_tokens - buffer_input_ids.numel(),),
                        tokenizer.pad_token_id,
                        dtype=torch.long,
                    ),
                ),
                dim=0,
            )
            buffer_attention_mask = torch.cat(
                (
                    buffer_attention_mask,
                    torch.full(
                        (max_tokens - buffer_attention_mask.numel(),),
                        0,
                        dtype=torch.long,
                    ),
                ),
                dim=0,
            )
        new_input_ids.append(buffer_input_ids)
        new_attention_mask.append(buffer_attention_mask)

    ret = {
        "input_ids": [seq.tolist() for seq in new_input_ids],
        "labels": [seq.tolist() for seq in new_input_ids],
        "attention_mask": [seq.tolist() for seq in new_attention_mask],
    }

    LOG.debug(len(ret["input_ids"]))
    return ret


def load_pretraining_dataset(path, tokenizer, max_tokens=2048, seed=42):
    encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
    dataset = load_dataset(path, streaming=True, split="train")
    dataset = dataset.shuffle(seed=seed, buffer_size=10_000)
    # TODO dynamically figure out which columns/features to remove
    dataset = dataset.map(encode, batched=True, remove_columns=["text", "meta"])
    return dataset