File size: 16,377 Bytes
5d86137 ce24f5e 5e37144 1d5ab84 be22551 ce24f5e e7d3e2d 1eebbd0 ce24f5e e7d3e2d 5e37144 553a86b ce24f5e cb9797e a1f9850 ce24f5e e7d3e2d ce24f5e 8d959a7 5d86137 8d959a7 ce24f5e 5d86137 ce24f5e 97d3776 ce24f5e 97d3776 5d86137 1d5ab84 2a428e8 1d5ab84 5d86137 1d5ab84 2a428e8 1d5ab84 1eebbd0 8662e8f 1eebbd0 97d3776 1eebbd0 85cf4f8 8e46c0f 85cf4f8 97d3776 8e46c0f 9d629d8 8e46c0f ce24f5e 87d7825 5d86137 8d20e0a 87d7825 ce24f5e 5d86137 7925ddc ce34d64 7925ddc ce24f5e 7925ddc ce24f5e 7925ddc ce24f5e 5d86137 ce34d64 ce24f5e 87d7825 5d86137 87d7825 ce24f5e 87d7825 b46bc02 5d86137 b46bc02 1365073 b46bc02 a12fb0a 5d86137 a12fb0a 87d7825 5d86137 87d7825 1365073 5d86137 1365073 87d7825 5d86137 87d7825 ce24f5e 6045345 5d86137 6045345 81de0ef 5d86137 81de0ef 2bc1a5b 5d86137 2bc1a5b 81de0ef ce34d64 81de0ef 5d86137 ce34d64 81de0ef 8e46c0f 81de0ef 5d86137 81de0ef 6045345 ce24f5e 5d86137 21c8e2d ce24f5e 8e46c0f 1d5ab84 e7d3e2d 8d959a7 5d86137 21c8e2d ce34d64 1d5ab84 e7d3e2d a363604 1d5ab84 a363604 ce34d64 e7d3e2d 37293dc ce34d64 1d5ab84 4ea9a66 1d5ab84 ce34d64 e7d3e2d 4ea9a66 a363604 ce34d64 e7d3e2d 37293dc ce34d64 1d5ab84 37293dc 1d5ab84 e7d3e2d 25eeeeb e7d3e2d 25eeeeb 1d5ab84 553a86b e7d3e2d 8e46c0f 5e37144 5d86137 5e37144 a363604 5e37144 a363604 5e37144 a363604 5e37144 8e46c0f e9650d3 8e46c0f 77bdb7d be22551 8e46c0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
"""Module containing PromptTokenizingStrategy and Prompter classes"""
import abc
import copy
import functools
import logging
from typing import Dict, List, Tuple, Union
from fastchat.conversation import Conversation
from transformers import BatchEncoding, PreTrainedTokenizer
from axolotl.monkeypatch.fastchat_conversation_turns import (
add_get_turns_to_conversation,
)
from axolotl.prompters import IGNORE_TOKEN_ID
LOG = logging.getLogger("axolotl")
IGNORE_INDEX = -100
LLAMA_DEFAULT_PAD_TOKEN = "<pad>" # nosec
LLAMA_DEFAULT_EOS_TOKEN = "</s>" # nosec
LLAMA_DEFAULT_BOS_TOKEN = "<s>" # nosec
LLAMA_DEFAULT_UNK_TOKEN = "<unk>" # nosec
add_get_turns_to_conversation()
class InvalidDataException(Exception):
"""
Exception raised when the data is invalid
"""
class PromptTokenizingStrategy(abc.ABC):
"""
Abstract class for tokenizing strategies
"""
def __init__(
self,
prompter,
tokenizer,
train_on_inputs: bool = False,
sequence_len: int = 2048,
):
self.prompter = prompter
self.tokenizer: PreTrainedTokenizer = tokenizer
self.train_on_inputs = train_on_inputs
self.sequence_len = sequence_len
self.max_length = sequence_len
@abc.abstractmethod
def tokenize_prompt(self, prompt):
pass
@property
def supports_batched(self):
return False
@functools.lru_cache(maxsize=128)
def _get_user_token(self):
try:
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|USER|>")
if isinstance(id_or_ids, (int,)):
return id_or_ids
except KeyError:
pass
return False
@functools.lru_cache(maxsize=128)
def _get_assistant_token(self):
try:
id_or_ids = self.tokenizer.convert_tokens_to_ids("<|ASSISTANT|>")
if isinstance(id_or_ids, (int,)):
return id_or_ids
except KeyError:
pass
return False
def _tokenize(
self, prompt: str, add_eos_token: bool = True, strip_bos_token: bool = False
) -> BatchEncoding:
result: BatchEncoding
if not prompt:
LOG.warning("Empty text requested for tokenization.")
result = BatchEncoding(data={"input_ids": [], "attention_mask": []})
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.max_length,
padding=False,
return_tensors=None,
)
if len(result["input_ids"]) == 0:
LOG.warning("Tokenizer result is empty. You may want to audit your dataset")
if (
len(result["input_ids"]) > 0
and result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.max_length
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
if (
len(result["input_ids"]) > 0
and result["input_ids"][0] == self.tokenizer.bos_token_id
and strip_bos_token
):
result["input_ids"] = result["input_ids"][1:]
result["attention_mask"] = result["attention_mask"][1:]
result["labels"] = result["input_ids"].copy()
return result
class InstructionPromptTokenizingStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for instruction-based prompts.
"""
def parse_instruction_fields(
self, prompt
) -> Union[Tuple[str, str, str], Tuple[str, str, str, str]]:
raise NotImplementedError
def tokenize_prompt(self, prompt):
(
instruction,
input, # pylint: disable=redefined-builtin
response,
) = self.parse_instruction_fields(prompt)
user_prompt = next(
iter(
self.prompter.build_prompt(
instruction,
input,
)
)
)
tokenized_prompt = self._tokenize(user_prompt, add_eos_token=False)
if not self.train_on_inputs:
user_prompt_len = len(tokenized_prompt["input_ids"])
# TODO this could be sped up using numpy array slicing
tokenized_prompt["labels"] = [-100] * user_prompt_len
tokenized_res_prompt = self._tokenize(
response, strip_bos_token=True, add_eos_token=True
)
tokenized_prompt["input_ids"] += tokenized_res_prompt["input_ids"]
tokenized_prompt["attention_mask"] += tokenized_res_prompt["attention_mask"]
tokenized_prompt["labels"] += tokenized_res_prompt["input_ids"]
return tokenized_prompt
def _build_full_prompt(
self, instruction, input, response # pylint: disable=redefined-builtin
):
return next(
iter(
self.prompter.build_prompt(
instruction,
input,
response,
)
)
)
class AlpacaPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for Alpaca prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["instruction"],
prompt["input"] if "input" in prompt else "",
prompt["output"],
)
class AlpacaMultipleChoicePromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for Alpaca Multiple Choice prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["question"],
"\n".join(f'- "{choice}"' for choice in prompt["choices"]),
prompt["solution"] if "solution" in prompt else prompt["explanation"],
)
class JeopardyPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for Jeopardy prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["question"],
prompt["category"],
"what is " + prompt["answer"],
)
class OpenAssistantPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for OpenAssistant prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["INSTRUCTION"],
"",
prompt["RESPONSE"],
)
class SummarizeTLDRPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for SummarizeTLDR prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["article"],
"",
prompt["summary"],
)
class GPTeacherPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for GPTeacher prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["instruction"],
prompt["input"] if "input" in prompt else "",
prompt["response"],
)
class NomicGPT4AllPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for NomicGPT4All prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["prompt"],
"",
prompt["response"],
)
class ReflectionPromptTokenizingStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for Reflection prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]:
raise NotImplementedError
def tokenize_prompt(self, prompt):
(
instruction,
input, # pylint: disable=redefined-builtin
output,
reflection,
corrected,
) = self.parse_instruction_fields(prompt)
full_prompt = self._build_full_prompt(
instruction, input, output, reflection, corrected
)
tokenized_full_prompt = self._tokenize(full_prompt)
if not self.train_on_inputs:
user_prompt = next(
iter(
self.prompter.build_prompt(
instruction,
input,
)
)
)
tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
# TODO this could be sped up using numpy array slicing
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]
return tokenized_full_prompt
def _build_full_prompt(
self, instruction, input, output, reflection, corrected
): # pylint: disable=redefined-builtin
return next(
iter(
self.prompter.build_prompt(
instruction,
input,
output,
reflection,
corrected,
)
)
)
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.sequence_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.sequence_len
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
class AlpacaReflectionPTStrategy(ReflectionPromptTokenizingStrategy):
"""
Tokenizing strategy for Alpaca Reflection prompts.
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str, str, str]:
return (
prompt["instruction"],
prompt["input"] if "input" in prompt else "",
prompt["output"],
prompt["reflection"],
prompt["corrected"],
)
class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for ShareGPT prompts.
"""
def get_conversation_thread(self, prompt):
return prompt["conversations"]
def tokenize_prompt(self, prompt):
result, current_len = tokenize_prompt_default()
user_token = self._get_user_token()
assistant_token = self._get_assistant_token()
conversation: Conversation = (
self.prompter._conversation # pylint: disable=protected-access
)
try:
for _, part in enumerate(
self.prompter.build_prompt(self.get_conversation_thread(prompt))
):
if isinstance(part, tuple):
if conversation.roles[0] in part[0]:
turn = part[0] + part[1] if not user_token else part[1]
# this is still the user query, we should
if not part[1].strip():
LOG.warning(f"user turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=False,
strip_bos_token=True,
)
if user_token:
res["input_ids"] = [user_token, *res["input_ids"]]
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
elif conversation.roles[1] in part[0]:
# TODO label assistant token/tokens w/ IGNORE_TOKEN_ID
turn = part[0] + part[1] if not assistant_token else part[1]
# this should be the assistant response, should end with an eos token
if not part[1].strip():
LOG.warning(f"assistant turn has empty text: {prompt}")
res = self._tokenize(
turn,
add_eos_token=True,
strip_bos_token=True,
)
if assistant_token:
res["input_ids"] = [
assistant_token,
*res["input_ids"],
]
# not masked out from labels
labels = copy.deepcopy(res["input_ids"])
elif part[0] == "":
turn = part[1]
# this is only ever the first part, should include the bos token and the user query
res = self._tokenize(
turn, add_eos_token=False, strip_bos_token=False
)
# everything from this is masked out from the labels
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
else:
LOG.warning(f"unhandled role: {part[0]}")
continue
# pylint: disable=duplicate-code
result, current_len = parse_tokenized_to_result(
result,
current_len,
res,
labels,
pad_token_id=self.tokenizer.pad_token_id,
)
return result
except (KeyError, AssertionError, IndexError) as err:
raise InvalidDataException(str(err)) from err
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
if not prompt.strip():
LOG.warning("Empty text requested for tokenization.")
result = BatchEncoding(data={"input_ids": [], "attention_mask": []})
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.sequence_len,
padding=False,
return_tensors=None,
)
if (
len(result["input_ids"]) > 0
and result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.sequence_len
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
if (
len(result["input_ids"]) > 0
and result["input_ids"][0] == self.tokenizer.bos_token_id
and strip_bos_token
):
result["input_ids"] = result["input_ids"][1:]
result["attention_mask"] = result["attention_mask"][1:]
result["labels"] = result["input_ids"].copy()
return result
def tokenize_prompt_default() -> Tuple[Dict[str, List[int]], int]:
"""
Returns the default values for the tokenize prompt function
"""
result: Dict[str, List[int]] = {
"input_ids": [],
"attention_mask": [],
"labels": [],
}
current_len = 0
return result, current_len
def parse_tokenized_to_result(
result: Dict[str, List[int]],
current_len: int,
res: Dict[str, List[int]],
labels: List[int],
pad_token_id: Union[int, None] = None,
) -> Tuple[Dict[str, List[int]], int]:
"""
Parses the tokenized prompt and append the tokenized input_ids, attention_mask and labels to the result
"""
input_ids = res["input_ids"]
input_len = len(input_ids)
result["input_ids"][current_len : current_len + input_len] = input_ids
result["attention_mask"][current_len : current_len + input_len] = [
1 if x != pad_token_id else 0 for x in input_ids
]
result["labels"][current_len : current_len + input_len] = labels
current_len += input_len
return result, current_len
|