Horus7-kaduce / app.py
Horus7's picture
Update app.py
dc4e72f
raw
history blame
1.36 kB
import gradio as gr
import tensorflow as tf
import numpy as np
import os
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.utils import load_img
# Charger le modèle
model = load_model('/content/drive/MyDrive/T-DEV-810/model_cv.h5')
# Charger l'image
img = load_img('/content/drive/MyDrive/T-DEV-810/DS/test/NORMAL/IM-0063-0001.jpeg', target_size=(100, 100))
# Prétraiter l'image
# img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = img/255
def detect(img):
prediction = model.predict(img)[0]
print(prediction)
if prediction[0] <= 0.80:
return "Pneumonia Detected!"
return "Pneumonia Not Detected!"
result = detect(img)
print(result)
os.system("tar -zxvf examples.tar.gz")
input = gr.inputs.Image(shape=(100, 100))
examples = ['examples/n1.jpeg', 'examples/n2.jpeg', 'examples/n3.jpeg', 'examples/n4.jpeg', 'examples/n5.jpeg',
'examples/n6.jpeg', 'examples/n7.jpeg', 'examples/n8.jpeg', 'examples/p6.jpeg', 'examples/p7.jpeg',
'examples/p1.jpeg', 'examples/p2.jpeg', 'examples/p3.jpeg', 'examples/p4.jpeg', 'examples/p8.jpeg']
title = "PneumoDetect: Pneumonia Detection from Chest X-Rays"
iface = gr.Interface(fn=detect, inputs=input, outputs="text", examples=examples, examples_per_page=20, title=title)
iface.launch(inline=False)