File size: 3,305 Bytes
ec0dbf0 0bee58f 58f5984 ec0dbf0 0bee58f ec0dbf0 8c4ce03 42691c3 8c4ce03 42691c3 8c4ce03 42691c3 8c4ce03 ec0dbf0 0bee58f 50a5493 0bee58f 50a5493 ec0dbf0 0bee58f 50a5493 0bee58f 50a5493 ec0dbf0 0bee58f ec0dbf0 0bee58f ec0dbf0 0bee58f ec0dbf0 58f5984 0bee58f ec0dbf0 ee7d7d6 ec0dbf0 ee7d7d6 58f5984 50a5493 58f5984 0bee58f 841fb88 ee7d7d6 ec0dbf0 ee7d7d6 0bee58f ec0dbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import cv2
import numpy as np
def apply_filter(image, filter_type, intensity):
# κ°λλ₯Ό 0.0μμ 1.0 μ¬μ΄λ‘ μ κ·ν
normalized_intensity = intensity / 100.0
if filter_type == "Grayscale":
return convert_to_grayscale(image)
elif filter_type == "Soft Glow":
gaussian = cv2.GaussianBlur(image, (15, 15), 0)
soft_glow = cv2.addWeighted(image, 1 - normalized_intensity, gaussian, normalized_intensity, 0)
return soft_glow
elif filter_type == "Portrait Enhancer":
# Step 1: Detail Enhance μ μ© (λ€μ κ°νκ²)
enhanced = cv2.detailEnhance(image, sigma_s=10, sigma_r=0.1 + 0.1 * normalized_intensity)
# Step 2: Gaussian Blur μ μ© (κ°λ μ‘°μ )
blurred = cv2.GaussianBlur(enhanced, (5, 5), 0)
# Step 3: Bilateral Filter μ μ© (μ½νκ², κ²½κ³ λ³΄μ‘΄)
smoothed = cv2.bilateralFilter(blurred, d=5, sigmaColor=50, sigmaSpace=50)
# Step 4: μλ³Έ μ΄λ―Έμ§μ νΌν©νμ¬ μ λͺ
ν¨ μ μ§
final_image = cv2.addWeighted(enhanced, 0.7, smoothed, 0.3, 0)
return final_image
elif filter_type == "Warm Tone":
increase_red = np.array([[1.0 + 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 - 0.2 * normalized_intensity]])
warm_image = cv2.transform(image, increase_red)
return warm_image
elif filter_type == "Cold Tone":
increase_blue = np.array([[1.0 - 0.2 * normalized_intensity, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0 + 0.2 * normalized_intensity]])
cold_image = cv2.transform(image, increase_blue)
return cold_image
elif filter_type == "High-Key":
high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.2 * normalized_intensity, beta=30)
return high_key
elif filter_type == "Low-Key":
low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.3 * normalized_intensity, beta=-30)
return low_key
elif filter_type == "Haze":
haze = cv2.addWeighted(image, 1.0 - 0.3 * normalized_intensity, np.full(image.shape, 255, dtype=np.uint8), 0.3 * normalized_intensity, 0)
return haze
else:
return image
def convert_to_grayscale(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray_image
def convert_and_save(image, filter_type, intensity):
filtered_image = apply_filter(image, filter_type, intensity)
output_path = "output.jpg"
cv2.imwrite(output_path, filtered_image)
return filtered_image, output_path
iface = gr.Interface(
fn=convert_and_save,
inputs=[
"image",
gr.Radio(
["Grayscale", "Soft Glow", "Portrait Enhancer", "Warm Tone", "Cold Tone", "High-Key", "Low-Key", "Haze"],
label="νν° μ ν"
),
gr.Slider(minimum=1, maximum=100, value=50, label="νν° κ°λ")
],
outputs=["image", "file"],
title="μ΄λ―Έμ§ νν° λ° νλ°± λ³νκΈ°",
description="μ΄λ―Έμ§λ₯Ό μ
λ‘λνκ³ νν°μ κ°λλ₯Ό μ ννλ©΄, λ³νλ μ΄λ―Έμ§λ₯Ό JPG νμΌλ‘ λ€μ΄λ‘λν μ μμ΅λλ€."
)
iface.launch()
|