|
--- |
|
title: Haystack Search Pipeline with Streamlit |
|
emoji: π |
|
colorFrom: indigo |
|
colorTo: indigo |
|
sdk: streamlit |
|
sdk_version: 1.23.0 |
|
app_file: app.py |
|
pinned: false |
|
--- |
|
|
|
# Template Streamlit App for Haystack Search Pipelines |
|
|
|
This template [Streamlit](https://docs.streamlit.io/) app set up for simple [Haystack search applications](https://docs.haystack.deepset.ai/docs/semantic_search). The template is ready to do QA with **Retrievel Augmented Generation**, or **Ectractive QA** |
|
|
|
See the ['How to use this template'](#how-to-use-this-template) instructions below to create a simple UI for your own Haystack search pipelines. |
|
|
|
Below you will also find instructions on how you could [push this to Hugging Face Spaces π€](#pushing-to-hugging-face-spaces-). |
|
|
|
## Installation and Running |
|
To run the bare application which does _nothing_: |
|
1. Install requirements: `pip install -r requirements.txt` |
|
2. Run the streamlit app: `streamlit run app.py` |
|
|
|
This will start up the app on `localhost:8501` where you will find a simple search bar. Before you start editing, you'll notice that the app will only show you instructions on what to edit. |
|
|
|
### Optional Configurations |
|
|
|
You can set optional cofigurations to set the: |
|
- `--task` you want to start the app with: `rag` or `extractive` (default: rag) |
|
- `--store` you want to use: `inmemory`, `opensearch`, `weaviate` or `milvus` (default: inmemory) |
|
- `--name` you want to have for the app. (default: 'My Search App') |
|
|
|
E.g.: |
|
|
|
```bash |
|
streamlit run app.py -- --store opensearch --task extractive --name 'My Opensearch Documentation Search' |
|
``` |
|
|
|
In a `.env` file, include all the config settings that you would like to use based on: |
|
- The DocumentStore of your choice |
|
- The Extractive/Generative model of your choice |
|
|
|
While the `/utils/config.py` will create default values for some configurations, others have to be set in the `.env` such as the `OPENAI_KEY` |
|
|
|
Example `.env` |
|
|
|
``` |
|
OPENAI_KEY=YOUR_KEY |
|
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L12-v2 |
|
GENERATIVE_MODEL=text-davinci-003 |
|
``` |
|
|
|
|
|
## How to use this template |
|
1. Create a new repository from this template or simply open it in a codespace to start playing around π |
|
2. Make sure your `requirements.txt` file includes the Haystack and Streamlit versions you would like to use. |
|
3. Change the code in `utils/haystack.py` if you would like a different pipeline. |
|
4. Create a `.env`file with all of your configuration settings. |
|
5. Make any UI edits you'd like to and [share with the Haystack community](https://haystack.deepeset.ai/community) |
|
6. Run the app as show in [installation and running](#installation-and-running) |
|
|
|
### Repo structure |
|
- `./utils`: This is where we have 3 files: |
|
- `config.py`: This file extracts all of the configuration settings from a `.env` file. For some config settings, it uses default values. An example of this is in [this demo project](https://github.com/TuanaCelik/should-i-follow/blob/main/utils/config.py). |
|
- `haystack.py`: Here you will find some functions already set up for you to start creating your Haystack search pipeline. It includes 2 main functions called `start_haystack()` which is what we use to create a pipeline and cache it, and `query()` which is the function called by `app.py` once a user query is received. |
|
- `ui.py`: Use this file for any UI and initial value setups. |
|
- `app.py`: This is the main Streamlit application file that we will run. In its current state it has a simple search bar, a 'Run' button, and a response that you can highlight answers with. |
|
|
|
### What to edit? |
|
There are default pipelines both in `start_haystack_extractive()` and `start_haystack_rag()` |
|
|
|
- Change the pipelines to use the embedding models, extractive or generative models as you need. |
|
- If using the `rag` task, change the `default_prompt_template` to use one of our available ones on [PromptHub](https://prompthub.deepset.ai) or create your own `PromptTemplate` |
|
|
|
|
|
## Pushing to Hugging Face Spaces π€ |
|
|
|
Below is an example GitHub action that will let you push your Streamlit app straight to the Hugging Face Hub as a Space. |
|
|
|
A few things to pay attention to: |
|
|
|
1. Create a New Space on Hugging Face with the Streamlit SDK. |
|
2. Create a Hugging Face token on your HF account. |
|
3. Create a secret on your GitHub repo called `HF_TOKEN` and put your Hugging Face token here. |
|
4. If you're using DocumentStores or APIs that require some keys/tokens, make sure these are provided as a secret for your HF Space too! |
|
5. This readme is set up to tell HF spaces that it's using streamlit and that the app is running on `app.py`, make any changes to the frontmatter of this readme to display the title, emoji etc you desire. |
|
6. Create a file in `.github/workflows/hf_sync.yml`. Here's an example that you can change with your own information, and an [example workflow](https://github.com/TuanaCelik/should-i-follow/blob/main/.github/workflows/hf_sync.yml) working for the [Should I Follow demo](https://huggingface.co/spaces/deepset/should-i-follow) |
|
|
|
```yaml |
|
name: Sync to Hugging Face hub |
|
on: |
|
push: |
|
branches: [main] |
|
|
|
# to run this workflow manually from the Actions tab |
|
workflow_dispatch: |
|
|
|
jobs: |
|
sync-to-hub: |
|
runs-on: ubuntu-latest |
|
steps: |
|
- uses: actions/checkout@v2 |
|
with: |
|
fetch-depth: 0 |
|
lfs: true |
|
- name: Push to hub |
|
env: |
|
HF_TOKEN: ${{ secrets.HF_TOKEN }} |
|
run: git push --force https://{YOUR_HF_USERNAME}:$HF_TOKEN@{YOUR_HF_SPACE_REPO} main |
|
``` |
|
|