File size: 968 Bytes
0c23360
 
5648f24
7e10d9c
541433e
 
0c23360
541433e
5648f24
0c23360
 
541433e
0c23360
 
06bd1d2
541433e
0c23360
541433e
2c6ad4c
5648f24
 
b5a722d
 
0c23360
541433e
b5a722d
541433e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import streamlit as st
from transformers import pipeline
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# Load the sentiment analysis model from our BERT model
classifier = pipeline("text-classification", model = "MarieAngeA13/Sentiment-Analysis-BERT")

# Create a Streamlit app
st.title('Sentiment Analysis with BERT')
st.write('Enter some text and we will predict its sentiment!')

# Add a text input box for the user to enter text
text_input = st.text_input('Enter text here')


# When the user submits text, run the sentiment analysis model on it
if st.button('Submit'):
    # Predict the sentiment of the text using our own BERT model
    output = classifier(text_input)

    best_prediction = output[0]
    sentiment = best_prediction['label']
    confidence = best_prediction['score']
    
    # Display the sentiment prediction to the user
    st.write(f'Sentiment: {sentiment}')
    st.write(f'Confidence: {round(confidence, 2)}')