Spaces:
Runtime error
Runtime error
File size: 5,067 Bytes
0fafb5e 6ac164c 37ca5d0 91b03f9 37ca5d0 b17ecc2 a445827 00a2ac7 a445827 37ca5d0 e3f498d 37ca5d0 0c7bc8d 37ca5d0 b17ecc2 37ca5d0 a445827 37ca5d0 00a2ac7 5aae577 00a2ac7 37ca5d0 00a2ac7 37ca5d0 00a2ac7 37ca5d0 00a2ac7 37ca5d0 00a2ac7 37ca5d0 00a2ac7 37ca5d0 708397c 37ca5d0 00a2ac7 37ca5d0 00a2ac7 6ac164c 37ca5d0 6ac164c 37ca5d0 e3f498d 37ca5d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Set the environment variable
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
DESCRIPTION = """\
# Llama 3.2 3B Instruct
Llama 3.2 3B is Meta's latest iteration of open LLMs.
This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
For more details, please check [our post](https://huggingface.co/blog/llama32).
"""
# Access token for the model (if required)
access_token = os.getenv('HF_TOKEN')
# Download the Base model
#model_id = "./models/Llama-32-3B-Instruct"
model_id = "Mikhil-jivus/Llama-32-8B-FineTuned-Instruct-v1"
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#model_id = "nltpt/Llama-3.2-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device,
torch_dtype=torch.bfloat16,
local_files_only = True
)
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [{"role": "system", "content": system_prompt}]
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
# Set pad_token_id if it's not already set
if tokenizer.pad_token_id is None:
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,add_special_tokens=True, return_tensors="pt",padding=True ,return_attention_mask=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# Ensure attention mask is set
#attention_mask = input_ids['attention_mask']
input_ids = input_ids.to(model.device)
#attention_mask = attention_mask.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(
label="System Prompt",
placeholder="Enter system prompt here...",
lines=2,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
)
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch() |