File size: 55,761 Bytes
2c0c3ee
 
 
 
 
 
 
1329302
fb1703c
1329302
 
 
4713c08
af15c91
2c0c3ee
 
fb1703c
4c7d6a3
2c0c3ee
 
 
 
 
 
 
 
 
149ddf5
2c0c3ee
 
 
 
 
 
 
 
 
2094932
 
 
149ddf5
2094932
 
 
 
 
 
 
 
 
149ddf5
af15c91
 
dfa08e1
af15c91
 
 
2c0c3ee
c647a0c
2c0c3ee
dfa08e1
2c0c3ee
dfa08e1
2c0c3ee
143d145
e799097
 
7429340
 
 
312b056
15d8a95
fb1703c
 
 
 
 
 
 
cc23ed9
 
1ac5e91
7044d1d
 
 
 
 
 
 
 
 
 
 
 
f1a67c9
cc23ed9
4208f4a
7044d1d
 
8bf2b61
90075ae
2c0c3ee
af15c91
 
 
 
ba1b862
 
af15c91
 
 
68a8fab
 
149ddf5
68a8fab
4713c08
163393f
03bbfb7
eae0f4b
 
 
 
 
 
 
be87652
cc34b57
 
 
2c0c3ee
4c7d6a3
 
1329302
68a8fab
 
 
 
4713c08
68a8fab
 
163393f
0135227
22439ab
68a8fab
 
 
 
 
 
00ef42b
1ea09c5
1329302
163393f
cc34b57
 
6c39dd6
cc34b57
 
eae0f4b
dfa08e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329302
2c0c3ee
 
 
dfa08e1
4713c08
1329302
dfa08e1
1329302
 
4713c08
 
1329302
dfa08e1
2c0c3ee
4713c08
 
 
ba1b862
15d8a95
 
4713c08
ba1b862
15d8a95
143d145
4713c08
1329302
4713c08
 
2c0c3ee
4713c08
 
1329302
 
 
4713c08
4cd9ca0
dfa08e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329302
dfa08e1
2c0c3ee
4713c08
 
2c0c3ee
4713c08
2c0c3ee
 
fcbf3e4
 
 
1329302
4713c08
2c0c3ee
 
4713c08
1329302
2c0c3ee
dfa08e1
dab3604
dfa08e1
dab3604
dfa08e1
dab3604
 
 
 
 
 
3c2ff58
 
802a7a0
3c2ff58
802a7a0
2bbbebc
e3f7150
163393f
 
dab3604
 
 
 
 
 
 
 
 
dfa08e1
4713c08
dfa08e1
4713c08
dfa08e1
2c0c3ee
4713c08
 
 
 
 
 
 
 
2c0c3ee
2df260c
2c0c3ee
4713c08
 
2c0c3ee
 
2df260c
 
2c0c3ee
 
 
 
 
4713c08
2c0c3ee
4713c08
2c0c3ee
 
 
 
 
 
 
 
 
4713c08
 
 
 
 
 
 
2c0c3ee
7ae617b
4713c08
7ae617b
4713c08
 
 
6947c31
4713c08
 
2c0c3ee
 
2df260c
7508147
2c0c3ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4713c08
 
2c0c3ee
 
 
4713c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae617b
4713c08
 
fdea0d5
 
4713c08
 
 
4b8ce80
4713c08
4b8ce80
4713c08
 
 
 
 
 
 
6947c31
 
4713c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa08e1
4713c08
163393f
 
1329302
dfa08e1
2c0c3ee
1329302
 
 
 
 
 
 
 
 
163393f
0b2b094
 
 
 
8a64082
163393f
 
e43db7d
b6fa50a
2b53a5b
e43db7d
 
 
 
 
8990830
e43db7d
5b60329
fb1703c
 
5b60329
fb1703c
1329302
 
 
163393f
1329302
b1505ef
5716aaa
 
fb1703c
 
5716aaa
a4352cc
fb1703c
6774173
 
 
5b60329
6774173
0b2b094
09fa35a
6947c31
24661d4
 
163393f
 
c16ce13
 
615c09a
c16ce13
 
 
 
615c09a
 
 
 
 
 
163393f
 
 
 
 
 
fd6e941
163393f
fd6e941
163393f
fd6e941
163393f
fd6e941
163393f
cce21a1
 
fd6e941
163393f
fd6e941
163393f
fd6e941
163393f
 
830b46e
163393f
 
 
 
 
 
5752e3b
 
 
163393f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1703c
 
 
163393f
 
68d4dce
163393f
 
0a08e64
163393f
 
 
 
6947c31
163393f
 
 
 
 
 
 
 
 
 
 
 
5b4abea
163393f
 
09fa35a
163393f
 
09fa35a
 
 
163393f
 
 
a4352cc
163393f
0b2b094
6947c31
7fecbe2
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
cce21a1
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
fd6e941
6947c31
7fecbe2
24661d4
7fecbe2
 
 
c16ce13
636246c
09fa35a
636246c
 
 
c16ce13
09fa35a
 
 
 
 
 
c16ce13
a31528c
163393f
a31528c
 
163393f
5b60329
a31528c
5b60329
a31528c
5b60329
a31528c
5b60329
34b0b01
cce21a1
 
5b60329
a31528c
5b60329
a31528c
5b60329
163393f
 
830b46e
163393f
 
 
a31528c
163393f
a31528c
5752e3b
 
 
a31528c
 
 
 
 
 
163393f
a31528c
 
 
 
163393f
a31528c
 
 
 
 
 
 
 
fb1703c
 
 
a31528c
 
68d4dce
a31528c
 
0a08e64
a31528c
 
 
 
6947c31
a31528c
 
 
 
 
 
163393f
a31528c
 
163393f
a31528c
163393f
5b4abea
496250b
 
09fa35a
1329302
163393f
0b2b094
 
1329302
6774173
1329302
 
 
 
 
 
 
 
163393f
1329302
 
d2a2324
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
from numpy import where as np_where
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import pymongo
import random
import gc
import scipy.stats as stats
from datetime import datetime

@st.cache_resource
def init_conn():
        scope = ['https://www.googleapis.com/auth/spreadsheets',
        "https://www.googleapis.com/auth/drive"]

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }

        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }

        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=100000)
        db = client["NBA_DFS"]
        prop_db = client["Props_DB"]

        NBA_Data = st.secrets['NBA_Data']

        gc_con = gspread.service_account_from_dict(credentials)
        gc_con2 = gspread.service_account_from_dict(credentials2)
      
        return gc_con, gc_con2, db, prop_db, NBA_Data

gcservice_account, gcservice_account2, db, prop_db, NBA_Data = init_conn()

game_format = {'Paydirt Win%': '{:.2%}', 'Vegas Win%': '{:.2%}'}
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
               'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
prop_table_options = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
all_sim_vars = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
pick6_sim_vars = ['Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds']
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])

def calculate_poisson(row):
    mean_val = row['Mean_Outcome']
    threshold = row['Prop']
    cdf_value = stats.poisson.cdf(threshold, mean_val)
    probability = 1 - cdf_value
    return probability

def add_column(df):
    return_df = df
    return_df['2P'] = return_df["Minutes"] * return_df["FG2M"]
    return_df['3P'] = return_df["Minutes"] * return_df["Threes"]
    return_df['FT'] = return_df["Minutes"] * return_df["FTM"]
    return_df['Points'] = (return_df["2P"] * 2) + (return_df["3P"] * 3) + return_df['FT']
    return_df['Rebounds'] = return_df["Minutes"] * return_df["TRB"]
    return_df['Assists'] = return_df["Minutes"] * return_df["AST"]
    return_df['PRA'] = return_df['Points'] + return_df['Rebounds'] + return_df['Assists']
    return_df['PR'] = return_df['Points'] + return_df['Rebounds']
    return_df['PA'] = return_df['Points'] + return_df['Assists']
    return_df['RA'] = return_df['Rebounds'] + return_df['Assists']
    return_df['Steals'] = return_df["Minutes"] * return_df["STL"]
    return_df['Blocks'] = return_df["Minutes"] * return_df["BLK"]
    return_df['Turnovers'] = return_df["Minutes"] * return_df["TOV"]
    return_df['Fantasy'] = (return_df["2P"] * 3) + (return_df["3P"] * 3.5) + return_df['FT'] + (return_df["Rebounds"] * 1.25) + (return_df["Assists"] * 1.5) + (return_df["Steals"] * 2) + (return_df["Blocks"] * 2) + (return_df["Turnovers"] * -.5)
    
    export_df = return_df[['Player', 'Position', 'Team', 'Opp', 'Minutes', '2P', '3P', 'FT', 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy']]
    
    return export_df

@st.cache_resource(ttl = 300)
def init_baselines():
    collection = db["Game_Betting_Model"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Team', 'Opp', 'PD Team Points', 'PD Opp Points', 'VEG Team Points', 'VEG Opp Points', 'PD Proj Total', 'VEG Proj Total', 'PD Over%', 'PD Over Odds', 'PD Under%', 'PD Under Odds',
                               'PD Proj Winner', 'PD Proj Spread', 'PD W Spread', 'VEG W Spread', 'PD Win%', 'PD Odds']]
    raw_display.replace('#DIV/0!', np.nan, inplace=True)
    game_model = raw_display.dropna()

    collection = db["Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display.replace('', np.nan, inplace=True)
    raw_display = raw_display.rename(columns={"Name": "Player"})
    raw_baselines = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', 'PRA', 'PR', 'PA', 'RA']]
    raw_baselines = raw_baselines[raw_baselines['Minutes'] > 0]
    raw_baselines['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
                                 ['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
                                  'Trey Murphy III', 'Cam Thomas'], inplace=True)
    
    player_stats = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'Fantasy']]
    player_stats = player_stats[player_stats['Minutes'] > 0]

    player_stats['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
                                 ['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
                                  'Trey Murphy III', 'Cam Thomas'], inplace=True)
    

    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    collection = db["Prop_Trends"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display.replace('', np.nan, inplace=True)
    raw_display = raw_display[['Name', 'over_prop', 'over_line', 'under_prop', 'under_line', 'OddsType', 'PropType', 'No Vig', 'Team', 'L5 Success', 'L10_Success', 'L20_success', 'L10 Avg', 'Projection',
                               'Proj Diff', 'Matchup Boost', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
    raw_display = raw_display.rename(columns={"Name": "Player", "OddsType": "book", "PropType": "prop_type"})
    prop_frame = raw_display.dropna(subset='Player')
    
    collection = db["Pick6_Trends"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Player', 'over_prop', 'over_line', 'under_prop', 'under_line', 'book', 'prop_type', 'No Vig', 'Team', 'L5 Success', 'L10_Success', 'L20_success', 'L10 Avg', 'Projection',
                               'Proj Diff', 'Matchup Boost', 'Implied Over', 'Trending Over', 'Over Edge', 'Implied Under', 'Trending Under', 'Under Edge']]
    pick_frame = raw_display.drop_duplicates(subset=['Player', 'prop_type'], keep='first')
    pick_frame = pick_frame.reset_index(drop=True)

    prop_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
                                 ['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
                                  'Trey Murphy III', 'Cam Thomas'], inplace=True)
    pick_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
                                 ['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
                                  'Trey Murphy III', 'Cam Thomas'], inplace=True)
    
    collection = prop_db["NBA_Props"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    market_props = raw_display[['Name', 'Position', 'Projection', 'PropType', 'OddsType', 'over_pay', 'under_pay']]
    market_props['over_prop'] = market_props['Projection']
    market_props['over_line'] = market_props['over_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
    market_props['under_prop'] = market_props['Projection']
    market_props['under_line'] = market_props['under_pay'].apply(lambda x: (x - 1) * 100 if x >= 2.0 else -100 / (x - 1))
    
    return game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp

def calculate_no_vig(row):
    def implied_probability(american_odds):
        if american_odds < 0:
            return (-american_odds) / ((-american_odds) + 100)
        else:
            return 100 / (american_odds + 100)

    over_line = row['over_line']
    under_line = row['under_line']
    over_prop = row['over_prop']
    
    over_prob = implied_probability(over_line)
    under_prob = implied_probability(under_line)
    
    total_prob = over_prob + under_prob
    no_vig_prob = (over_prob / total_prob + 0.5) * over_prop
    
    return no_vig_prob

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", 'Prop Market', "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])

with tab1:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset1'):
              st.cache_data.clear()
              game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
    team_frame = game_model
    if line_var1 == 'Percentage':
        team_frame = team_frame[['Team', 'Opp', 'PD Team Points', 'PD Opp Points', 'VEG Team Points', 'VEG Opp Points', 'PD Proj Total', 'VEG Proj Total', 'PD Over%', 'PD Under%', 'PD Proj Winner', 'PD Proj Spread', 'PD W Spread', 'VEG W Spread', 'PD Win%']]
        team_frame = team_frame.set_index('Team')
        st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
    if line_var1 == 'American':
        team_frame = team_frame[['Team', 'Opp', 'PD Team Points', 'PD Opp Points', 'VEG Team Points', 'VEG Opp Points', 'PD Proj Total', 'VEG Proj Total', 'PD Over Odds', 'PD Under Odds', 'PD Proj Winner', 'PD Proj Spread', 'PD W Spread', 'VEG W Spread', 'PD Odds']]
        team_frame = team_frame.set_index('Team')
        st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
    
    st.download_button(
        label="Export Team Model",
        data=convert_df_to_csv(team_frame),
        file_name='NBA_team_betting_export.csv',
        mime='text/csv',
        key='team_export',
    )

with tab2:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset2'):
              st.cache_data.clear()
              game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    market_type = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options, key = 'market_type_key')
    disp_market = market_props.copy()
    disp_market = disp_market[disp_market['PropType'] == market_type]
    disp_market['No_Vig_Prop'] = disp_market.apply(calculate_no_vig, axis=1)
    fanduel_frame = disp_market[disp_market['OddsType'] == 'FANDUEL']
    fanduel_dict = dict(zip(fanduel_frame['Name'], fanduel_frame['No_Vig_Prop']))
    draftkings_frame = disp_market[disp_market['OddsType'] == 'DRAFTKINGS']
    draftkings_dict = dict(zip(draftkings_frame['Name'], draftkings_frame['No_Vig_Prop']))
    mgm_frame = disp_market[disp_market['OddsType'] == 'MGM']
    mgm_dict = dict(zip(mgm_frame['Name'], mgm_frame['No_Vig_Prop']))
    bet365_frame = disp_market[disp_market['OddsType'] == 'BET_365']
    bet365_dict = dict(zip(bet365_frame['Name'], bet365_frame['No_Vig_Prop']))

    disp_market['FANDUEL'] = disp_market['Name'].map(fanduel_dict)
    disp_market['DRAFTKINGS'] = disp_market['Name'].map(draftkings_dict)
    disp_market['MGM'] = disp_market['Name'].map(mgm_dict)
    disp_market['BET365'] = disp_market['Name'].map(bet365_dict)

    disp_market = disp_market[['Name', 'Position','FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365']]
    disp_market = disp_market.drop_duplicates(subset=['Name'], keep='first', ignore_index=True)

    st.dataframe(disp_market.style.background_gradient(axis=1, subset=['FANDUEL', 'DRAFTKINGS', 'MGM', 'BET365'], cmap='RdYlGn').format(prop_format, precision=2), height = 1000, use_container_width = True)
    st.download_button(
        label="Export Market Props",
        data=convert_df_to_csv(disp_market),
        file_name='NFL_market_props_export.csv',
        mime='text/csv',
    )

with tab3:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset3'):
              st.cache_data.clear()
              game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
    if split_var1 == 'Specific Teams':
        team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
    elif split_var1 == 'All':
        team_var1 = player_stats.Team.values.tolist()
    player_stats = player_stats[player_stats['Team'].isin(team_var1)]
    player_stats_disp = player_stats.set_index('Player')
    player_stats_disp = player_stats_disp.sort_values(by='Fantasy', ascending=False)
    st.dataframe(player_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
    st.download_button(
        label="Export Prop Model",
        data=convert_df_to_csv(player_stats),
        file_name='NBA_stats_export.csv',
        mime='text/csv',
    )
    
with tab4:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset4'):
              st.cache_data.clear()
              game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
    if split_var5 == 'Specific Teams':
        team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var5')
    elif split_var5 == 'All':
        team_var5 = player_stats.Team.values.tolist()
    book_split5 = st.radio("Would you like to view all books or specific ones?", ('All', 'Specific Books'), key='book_split5')
    if book_split5 == 'Specific Books':
        book_var5 = st.multiselect('Which books would you like to include in the tables?', options = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'], key='book_var5')
    elif book_split5 == 'All':
        book_var5 = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
    prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
    prop_frame_disp = prop_frame[prop_frame['Team'].isin(team_var5)]
    prop_frame_disp = prop_frame_disp[prop_frame_disp['book'].isin(book_var5)]
    prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
    prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
    st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
    st.download_button(
        label="Export Prop Trends Model",
        data=convert_df_to_csv(prop_frame),
        file_name='NBA_prop_trends_export.csv',
        mime='text/csv',
    )
    
with tab5:
    st.info(t_stamp)
    if st.button("Reset Data", key='reset5'):
              st.cache_data.clear()
              game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    col1, col2 = st.columns([1, 5])
    
    with col2:
        df_hold_container = st.empty()
        info_hold_container = st.empty()
        plot_hold_container = st.empty()
    
    with col1:
        player_check = st.selectbox('Select player to simulate props', options = player_stats['Player'].unique())
        prop_type_var = st.selectbox('Select type of prop to simulate', options = ['points', 'threes', 'rebounds', 'assists', 'blocks', 'steals',
                                                                                   'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])

        ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
        if prop_type_var == 'points':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 15.5, step = .5)
        elif prop_type_var == 'threes':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
        elif prop_type_var == 'rebounds':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
        elif prop_type_var == 'assists':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
        elif prop_type_var == 'blocks':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
        elif prop_type_var == 'steals':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
        elif prop_type_var == 'PRA':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 65.5, value = 20.5, step = .5)
        elif prop_type_var == 'points+rebounds':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
        elif prop_type_var == 'points+assists':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
        elif prop_type_var == 'rebounds+assists':
            prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
        line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1500, max_value = 1500, value = -150, step = 1)
        line_var = line_var + 1

        if st.button('Simulate Prop'):
            with col2:
                   
                    with df_hold_container.container():

                        df = player_stats
                        st.write("sim started")

                        total_sims = 1000

                        df.replace("", 0, inplace=True)

                        player_var = df[df['Player'] == player_check]
                        player_var = player_var.reset_index()

                        if prop_type_var == 'points':
                            df['Median'] = df['Points']
                        elif prop_type_var == 'threes':
                            df['Median'] = df['3P']
                        elif prop_type_var == 'rebounds':
                            df['Median'] = df['Rebounds']
                        elif prop_type_var == 'assists':
                            df['Median'] = df['Assists']
                        elif prop_type_var == 'blocks':
                            df['Median'] = df['Blocks']
                        elif prop_type_var == 'steals':
                            df['Median'] = df['Steals']
                        elif prop_type_var == 'PRA':
                            df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
                        elif prop_type_var == 'points+rebounds':
                            df['Median'] = df['Points'] + df['Rebounds']
                        elif prop_type_var == 'points+assists':
                            df['Median'] = df['Points'] + df['Assists']
                        elif prop_type_var == 'rebounds+assists':
                            df['Median'] = df['Assists'] + df['Rebounds']

                        flex_file = df
                        flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
                        flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
                        flex_file['STD'] = (flex_file['Median']/4)
                        flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]

                        hold_file = flex_file
                        overall_file = flex_file
                        salary_file = flex_file

                        overall_players = overall_file[['Player']]

                        for x in range(0,total_sims):
                            overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])

                        overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

                        players_only = hold_file[['Player']]

                        player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
                        st.write("sim finished, calculating outcomes")

                        players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                        players_only['Prop'] = prop_var
                        players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
                        players_only['10%'] = overall_file.quantile(0.1, axis=1)
                        players_only['90%'] = overall_file.quantile(0.9, axis=1)
                        if ou_var == 'Over':
                            players_only['beat_prop'] = np.where(players_only['Prop'] <= 3, players_only['poisson_var'], overall_file[overall_file > prop_var].count(axis=1)/float(total_sims))
                        elif ou_var == 'Under':
                            players_only['beat_prop'] = np.where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims)))

                        players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))

                        players_only['Player'] = hold_file[['Player']]

                        final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
                        final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
                        final_outcomes = final_outcomes[final_outcomes['Player'] == player_check]
                        player_outcomes = player_outcomes[player_outcomes['Player'] == player_check]
                        player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
                        player_outcomes = player_outcomes.reset_index()
                        player_outcomes.columns = ['Instance', 'Outcome']

                        x1 = player_outcomes.Outcome.to_numpy()

                        print(x1)

                        hist_data = [x1]

                        group_labels = ['player outcomes']

                        fig = px.histogram(
                                player_outcomes, x='Outcome')
                        fig.add_vline(x=prop_var, line_dash="dash", line_color="green")

                        with df_hold_container:
                            df_hold_container = st.empty()
                            format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
                            st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)

                        with info_hold_container:
                            st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')

                        with plot_hold_container:
                            st.dataframe(player_outcomes, use_container_width = True)
                            plot_hold_container = st.empty()
                            st.plotly_chart(fig, use_container_width=True)

with tab6:
    st.info(t_stamp)
    st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
    if st.button("Reset Data/Load Data", key='reset6'):
              st.cache_data.clear()
              game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
              t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    col1, col2 = st.columns([1, 5])
    
    with col2:
        df_hold_container = st.empty()
        info_hold_container = st.empty()
        plot_hold_container = st.empty()
        export_container = st.empty()
    
    with col1:
        game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
        book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
        if book_select_var == 'ALL':
            book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
        else:
            book_selections = [book_select_var]
        if game_select_var == 'Aggregate':
            prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
        elif game_select_var == 'Pick6':
            prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
            book_selections = ['Pick6']
        st.download_button(
            label="Download Prop Source",
            data=convert_df_to_csv(prop_df),
            file_name='Nba_prop_source.csv',
            mime='text/csv',
            key='prop_source',
        )
        if game_select_var == 'Aggregate':
            prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS',
                                                                            'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE'])
        elif game_select_var == 'Pick6':
            prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds', '3-Pointers Made'])

        if st.button('Simulate Prop Category'):
            with col2:
                   
                    with df_hold_container.container():
                        if prop_type_var == 'All Props':
                            if game_select_var == 'Aggregate':
                                prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                                sim_vars = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS',
                                            'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE']
                            elif game_select_var == 'Pick6':
                                prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                                sim_vars = ['Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds', '3-Pointers Made']
                            
                            player_df = player_stats.copy()
                                
                            for prop in sim_vars:
                                
                                for books in book_selections:
                                    prop_df = prop_df_raw[prop_df_raw['prop_type'] == prop]
                                    prop_df = prop_df[prop_df['book'] == books]
                                    prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                                    prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
                                    prop_df['Over'] = 1 / prop_df['over_line']
                                    prop_df['Under'] = 1 / prop_df['under_line']

                                    prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
                                    prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
                                    book_dict = dict(zip(prop_df.Player, prop_df.book))
                                    over_dict = dict(zip(prop_df.Player, prop_df.Over))
                                    under_dict = dict(zip(prop_df.Player, prop_df.Under))

                                    player_df['book'] = player_df['Player'].map(book_dict)
                                    player_df['Prop'] = player_df['Player'].map(prop_dict)
                                    player_df['prop_type'] = player_df['Player'].map(prop_type_dict)

                                    df = player_df.reset_index(drop=True)

                                    team_dict = dict(zip(df.Player, df.Team))
                                    
                                    total_sims = 1000
            
                                    df.replace("", 0, inplace=True)
                                    
                                    if prop == "NBA_GAME_PLAYER_POINTS" or prop == "Points":
                                        df['Median'] = df['Points']
                                    elif prop == "NBA_GAME_PLAYER_REBOUNDS" or prop == "Rebounds":
                                        df['Median'] = df['Rebounds']
                                    elif prop == "NBA_GAME_PLAYER_ASSISTS" or prop == "Assists":
                                        df['Median'] = df['Assists']
                                    elif prop == "NBA_GAME_PLAYER_3_POINTERS_MADE" or prop == "3-Pointers Made":
                                        df['Median'] = df['3P']
                                    elif prop == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS" or prop == "Points + Assists + Rebounds":
                                        df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
                                    elif prop == "NBA_GAME_PLAYER_POINTS_REBOUNDS" or prop == "Points + Rebounds":
                                        df['Median'] = df['Points'] + df['Rebounds']
                                    elif prop == "NBA_GAME_PLAYER_POINTS_ASSISTS" or prop == "Points + Assists":
                                        df['Median'] = df['Points'] + df['Assists']
                                    elif prop == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS" or prop == "Assists + Rebounds":
                                        df['Median'] = df['Rebounds'] + df['Assists']
                                        
                                    flex_file = df.copy()
                                    flex_file['Floor'] = flex_file['Median'] * .25
                                    flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
                                    flex_file['STD'] = flex_file['Median'] / 4
                                    flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                                    flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
            
                                    hold_file = flex_file.copy()
                                    overall_file = flex_file.copy()
                                    prop_file = flex_file.copy()
                                          
                                    overall_players = overall_file[['Player']]
            
                                    for x in range(0,total_sims):    
                                        prop_file[x] = prop_file['Prop']
            
                                    prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
            
                                    for x in range(0,total_sims):
                                        overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
            
                                    overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
            
                                    players_only = hold_file[['Player']]
            
                                    player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
            
                                    prop_check = (overall_file - prop_file)
            
                                    players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                                    players_only['Book'] = players_only['Player'].map(book_dict)
                                    players_only['Prop'] = players_only['Player'].map(prop_dict)
                                    players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
                                    players_only['10%'] = overall_file.quantile(0.1, axis=1)
                                    players_only['90%'] = overall_file.quantile(0.9, axis=1)
                                    players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
                                    players_only['Imp Over'] = players_only['Player'].map(over_dict)
                                    players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
                                    players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
                                    players_only['Imp Under'] = players_only['Player'].map(under_dict)
                                    players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
                                    players_only['Prop_avg'] = players_only['Prop'].mean() / 100
                                    players_only['prop_threshold'] = .10
                                    players_only = players_only[players_only['Mean_Outcome'] > 0]
                                    players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
                                    players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
                                    players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
                                    players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
                                    players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
                                    players_only['Edge'] = players_only['Bet_check']
                                    players_only['Prop Type'] = prop
            
                                    players_only['Player'] = hold_file[['Player']]
                                    players_only['Team'] = players_only['Player'].map(team_dict)
            
                                    leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
                                    sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
                                    
                                    final_outcomes = sim_all_hold
                                    st.write(f'finished {prop} for {books}')
                                
                        elif prop_type_var != 'All Props':
                            
                            player_df = player_stats.copy()
                            
                            if game_select_var == 'Aggregate':
                                prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                            elif game_select_var == 'Pick6':
                                prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                                
                            for books in book_selections:
                                prop_df = prop_df_raw[prop_df_raw['book'] == books]

                                if prop_type_var == "NBA_GAME_PLAYER_POINTS":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS']
                                elif prop_type_var == "Points":
                                    prop_df = prop_df[prop_df['prop_type'] == 'Points']
                                elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS']
                                elif prop_type_var == "Rebounds":
                                    prop_df = prop_df[prop_df['prop_type'] == 'Rebounds']
                                elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_ASSISTS']
                                elif prop_type_var == "Assists":
                                    prop_df = prop_df[prop_df['prop_type'] == 'Assists']
                                elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_3_POINTERS_MADE']
                                elif prop_type_var == "3-Pointers Made":
                                    prop_df = prop_df[prop_df['prop_type'] == '3-Pointers Made']
                                elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS']
                                elif prop_type_var == "Points + Assists + Rebounds":
                                    prop_df = prop_df[prop_df['prop_type'] == 'Points + Assists + Rebounds']
                                elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS']
                                elif prop_type_var == "Points + Rebounds":
                                    prop_df = prop_df[prop_df['prop_type'] == 'Points + Rebounds']
                                elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_ASSISTS']
                                elif prop_type_var == "Points + Assists":
                                    prop_df = prop_df[prop_df['prop_type'] == 'Points + Assists']
                                elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS":
                                    prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
                                elif prop_type_var == "Assists + Rebounds":
                                    prop_df = prop_df[prop_df['prop_type'] == 'Assists + Rebounds']

                                prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
                                prop_df = prop_df.rename(columns={"over_prop": "Prop"})
                                prop_df['Over'] = 1 / prop_df['over_line']
                                prop_df['Under'] = 1 / prop_df['under_line']

                                prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
                                prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
                                book_dict = dict(zip(prop_df.Player, prop_df.book))
                                over_dict = dict(zip(prop_df.Player, prop_df.Over))
                                under_dict = dict(zip(prop_df.Player, prop_df.Under))

                                player_df['book'] = player_df['Player'].map(book_dict)
                                player_df['Prop'] = player_df['Player'].map(prop_dict)
                                player_df['prop_type'] = player_df['Player'].map(prop_type_dict)

                                df = player_df.reset_index(drop=True)

                                team_dict = dict(zip(df.Player, df.Team))
                                
                                total_sims = 1000
        
                                df.replace("", 0, inplace=True)
                                
                                if prop_type_var == "NBA_GAME_PLAYER_POINTS" or prop_type_var == "Points":
                                    df['Median'] = df['Points']
                                elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS" or prop_type_var == "Rebounds":
                                    df['Median'] = df['Rebounds']
                                elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS" or prop_type_var == "Assists":
                                    df['Median'] = df['Assists']
                                elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE" or prop_type_var == "3-Pointers Made":
                                    df['Median'] = df['3P']
                                elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS" or prop_type_var == "Points + Assists + Rebounds":
                                    df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
                                elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS" or prop_type_var == "Points + Rebounds":
                                    df['Median'] = df['Points'] + df['Rebounds']
                                elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS" or prop_type_var == "Points + Assists":
                                    df['Median'] = df['Points'] + df['Assists']
                                elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS" or prop_type_var == "Assists + Rebounds":
                                    df['Median'] = df['Rebounds'] + df['Assists']
                                
                                flex_file = df.copy()
                                flex_file['Floor'] = flex_file['Median'] * .25
                                flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
                                flex_file['STD'] = flex_file['Median'] / 4
                                flex_file['Prop'] = flex_file['Player'].map(prop_dict)
                                flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
        
                                hold_file = flex_file.copy()
                                overall_file = flex_file.copy()
                                prop_file = flex_file.copy()
                                      
                                overall_players = overall_file[['Player']]
        
                                for x in range(0,total_sims):    
                                    prop_file[x] = prop_file['Prop']
        
                                prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
        
                                for x in range(0,total_sims):
                                    overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
        
                                overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
        
                                players_only = hold_file[['Player']]
        
                                player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
        
                                prop_check = (overall_file - prop_file)
        
                                players_only['Mean_Outcome'] = overall_file.mean(axis=1)
                                players_only['Book'] = players_only['Player'].map(book_dict)
                                players_only['Prop'] = players_only['Player'].map(prop_dict)
                                players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
                                players_only['10%'] = overall_file.quantile(0.1, axis=1)
                                players_only['90%'] = overall_file.quantile(0.9, axis=1)
                                players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
                                players_only['Imp Over'] = players_only['Player'].map(over_dict)
                                players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
                                players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
                                players_only['Imp Under'] = players_only['Player'].map(under_dict)
                                players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
                                players_only['Prop_avg'] = players_only['Prop'].mean() / 100
                                players_only['prop_threshold'] = .10
                                players_only = players_only[players_only['Mean_Outcome'] > 0]
                                players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
                                players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
                                players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
                                players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
                                players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
                                players_only['Edge'] = players_only['Bet_check']
                                players_only['Prop Type'] = prop_type_var
        
                                players_only['Player'] = hold_file[['Player']]
                                players_only['Team'] = players_only['Player'].map(team_dict)
        
                                leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
                                sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
                                
                                final_outcomes = sim_all_hold
                                st.write(f'finished {prop_type_var} for {books}')
                        
                        final_outcomes = final_outcomes.dropna()
                        if game_select_var == 'Pick6':
                            final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
                        final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)

                        with df_hold_container:
                            df_hold_container = st.empty()
                            st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
                        with export_container:
                            export_container = st.empty()
                            st.download_button(
                                label="Export Projections",
                                data=convert_df_to_csv(final_outcomes),
                                file_name='NBA_prop_proj.csv',
                                mime='text/csv',
                                key='prop_proj',
                            )