File size: 5,121 Bytes
d8b6286
 
7d6a9ed
68f6bb9
6d3bc8f
7d6a9ed
 
8a8a249
68f6bb9
 
8a8a249
 
68f6bb9
6d3bc8f
68f6bb9
 
 
 
 
 
 
 
8a8a249
913c46d
68f6bb9
 
 
7d6a9ed
6d3bc8f
7d6a9ed
 
6d3bc8f
7d6a9ed
913c46d
 
 
b7bc027
 
7d6a9ed
b7bc027
 
913c46d
8a8a249
 
7d6a9ed
68f6bb9
b7bc027
68f6bb9
 
 
 
 
 
 
 
 
 
 
 
6d3bc8f
68f6bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d3bc8f
 
 
8a8a249
 
6d3bc8f
 
8a8a249
6d3bc8f
68f6bb9
6d3bc8f
68f6bb9
6d3bc8f
68f6bb9
8a8a249
68f6bb9
913c46d
68f6bb9
 
 
b7bc027
68f6bb9
 
6d3bc8f
68f6bb9
6d3bc8f
68f6bb9
6d3bc8f
 
68f6bb9
 
b7bc027
68f6bb9
6d3bc8f
68f6bb9
 
6d3bc8f
b7bc027
68f6bb9
 
8a8a249
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import spaces
import gradio as gr
import os
from pyannote.audio import Pipeline
from pydub import AudioSegment

# 获取 Hugging Face 认证令牌
HF_TOKEN = os.environ.get("HUGGINGFACE_READ_TOKEN")
pipeline = None

# 尝试加载 pyannote 模型
try:
    pipeline = Pipeline.from_pretrained(
        "pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    pipeline.to(device)
except Exception as e:
    print(f"Error initializing pipeline: {e}")
    pipeline = None

# 音频拼接函数:拼接目标音频和混合音频,返回目标音频的起始时间和结束时间作为字典
def combine_audio_with_time(target_audio, mixed_audio):
    if pipeline is None:
        return "错误: 模型未初始化"

    # 加载目标说话人的样本音频
    target_audio_segment = AudioSegment.from_wav(target_audio)

    # 加载混合音频
    mixed_audio_segment = AudioSegment.from_wav(mixed_audio)

    # 记录目标说话人音频的时间点(精确到0.01秒)
    target_start_time = len(mixed_audio_segment) / 1000  # 秒为单位,精确到 0.01 秒

    # 目标音频的结束时间(拼接后的音频长度)
    target_end_time = target_start_time + len(target_audio_segment) / 1000  # 秒为单位

    # 将目标说话人的音频片段添加到混合音频的最后
    mixed_audio_segment + target_audio_segment

    # 返回字典,包含目标音频的起始和结束时间
    return {"start_time": target_start_time, "end_time": target_end_time}

# 使用 pyannote/speaker-diarization 对拼接后的音频进行说话人分离
@spaces.GPU(duration=60 * 2)  # 使用 GPU 加速,限制执行时间为 120 秒
def diarize_audio(temp_file):
    if pipeline is None:
        return "错误: 模型未初始化"
    
    try:
        diarization = pipeline(temp_file)
    except Exception as e:
        return f"处理音频时出错: {e}"

    # 返回 diarization 输出
    return str(diarization)

# 生成标签文件的函数
def generate_labels_from_diarization(diarization_output):
    labels_path = 'labels.txt'
    successful_lines = 0

    try:
        with open(labels_path, 'w') as outfile:
            lines = diarization_output.strip().split('\n')
            for line in lines:
                try:
                    parts = line.strip()[1:-1].split(' --> ')
                    start_time = parts[0].strip()
                    end_time = parts[1].split(']')[0].strip()
                    label = line.split()[-1].strip()
                    start_seconds = timestamp_to_seconds(start_time)
                    end_seconds = timestamp_to_seconds(end_time)
                    outfile.write(f"{start_seconds}\t{end_seconds}\t{label}\n")
                    successful_lines += 1
                except Exception as e:
                    print(f"处理行时出错: '{line.strip()}'. 错误: {e}")
        print(f"成功处理了 {successful_lines} 行。")
        return labels_path if successful_lines > 0 else None
    except Exception as e:
        print(f"写入文件时出错: {e}")
        return None

# 将时间戳转换为秒
def timestamp_to_seconds(timestamp):
    try:
        h, m, s = map(float, timestamp.split(':'))
        return 3600 * h + 60 * m + s
    except ValueError as e:
        print(f"转换时间戳时出错: '{timestamp}'. 错误: {e}")
        return None

# 处理音频文件并返回输出
def process_audio(target_audio, mixed_audio):
    # 进行音频拼接并返回目标音频的起始和结束时间(作为字典)
    time_dict = combine_audio_with_time(target_audio, mixed_audio)
    
    # 执行说话人分离
    diarization_result = diarize_audio("final_output.wav")
    
    if diarization_result.startswith("错误"):
        return diarization_result, None, None  # 出错时返回错误信息
    else:
        # 生成标签文件
        label_file = generate_labels_from_diarization(diarization_result)
        return diarization_result, label_file, time_dict  # 返回说话人分离结果、标签文件和目标音频的时间段

# Gradio 接口
with gr.Blocks() as demo:
    gr.Markdown("""
    # 🗣️ 音频拼接与说话人分类 🗣️
    上传目标说话人音频和混合音频,拼接并进行说话人分类。结果包括说话人分离输出、标签文件和目标音频的时间段。
    """)

    target_audio_input = gr.Audio(type="filepath", label="上传目标说话人音频")
    mixed_audio_input = gr.Audio(type="filepath", label="上传混合音频")
    
    process_button = gr.Button("处理音频")
    
    # 输出结果
    diarization_output = gr.Textbox(label="说话人分离结果")
    label_file_link = gr.File(label="下载标签文件")
    time_range_output = gr.Textbox(label="目标音频时间段")

    # 点击按钮时触发处理音频
    process_button.click(
        fn=process_audio,
        inputs=[target_audio_input, mixed_audio_input],
        outputs=[diarization_output, label_file_link, time_range_output]
    )

demo.launch(share=True)