Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
def app(): | |
st.title('Toxic Comment Detector') | |
st.write('Модель: ruBert tiny toxicity.') | |
st.image('https://media4.giphy.com/media/CdhxVrdRN4YFi/giphy.gif') | |
model_checkpoint = 'cointegrated/rubert-tiny-toxicity' | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) | |
if torch.cuda.is_available(): | |
model.cuda() | |
def text2toxicity(text, aggregate=True): | |
""" Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)""" | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) | |
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() | |
if isinstance(text, str): | |
proba = proba[0] | |
if aggregate: | |
return 1 - proba.T[0] * (1 - proba.T[-1]) | |
return proba | |
user_input = st.text_area("Enter your text:", "Собака сутулая") | |
if st.button("Analyze"): | |
toxicity_score = text2toxicity(user_input, True) | |
st.write(f"Toxicity Score: {toxicity_score:.4f}") | |
if toxicity_score > 0.5: | |
st.write("Warning: The text seems to be toxic!") | |