File size: 5,386 Bytes
20ffb87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f4906
 
 
 
 
 
20ffb87
 
b550f25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ffb87
 
b550f25
20ffb87
 
 
e5f4906
 
 
 
 
 
 
20ffb87
e5f4906
20ffb87
 
 
e5f4906
20ffb87
 
e5f4906
 
 
 
 
 
 
 
20ffb87
 
e5f4906
20ffb87
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f4906
20ffb87
 
 
 
 
 
 
e502daa
20ffb87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f4906
 
 
20ffb87
 
 
 
 
 
 
 
 
e5f4906
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import numpy as np
from torchvision import transforms
import torch
from helpers import *
import sys
import csv
from monoscene.monoscene import MonoScene

csv.field_size_limit(sys.maxsize)
torch.set_grad_enabled(False)

# pipeline = pipeline(model="anhquancao/monoscene_kitti")
# model = AutoModel.from_pretrained(
#     "anhquancao/monoscene_kitti", trust_remote_code=True, revision='bf033f87c2a86b60903ab811b790a1532c1ae313'
# )#.cuda()
model = MonoScene.load_from_checkpoint(
    "monoscene_nyu.ckpt",
    dataset="NYU",
    feature=200,
    project_scale=1,
    full_scene_size=(60, 36, 60),
)


def get_projections(img_W, img_H):
    scale_3ds = [1, 2]
    data = {}
    for scale_3d in scale_3ds:
        scene_size = (4.8, 4.8, 2.88)
        vox_origin = np.array([-1.54591799,  0.8907361 , -0.05 ])
        voxel_size = 0.08

        
        cam_k = np.array([[518.8579, 0, 320], [0, 518.8579, 240], [0, 0, 1]])
        cam_pose = np.asarray([[ 9.6699458e-01,  4.2662762e-02,  2.5120059e-01,  0.0000000e+00],
       [-2.5147417e-01,  1.0867463e-03,  9.6786356e-01,  0.0000000e+00],
       [ 4.1018680e-02, -9.9908894e-01,  1.1779292e-02,  1.1794727e+00],
       [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00,  1.0000000e+00]])
        T_velo_2_cam = np.linalg.inv(cam_pose)

        # compute the 3D-2D mapping
        projected_pix, fov_mask, pix_z = vox2pix(
            T_velo_2_cam,
            cam_k,
            vox_origin,
            voxel_size * scale_3d,
            img_W,
            img_H,
            scene_size,
        )

        data["projected_pix_{}".format(scale_3d)] = projected_pix
        data["pix_z_{}".format(scale_3d)] = pix_z
        data["fov_mask_{}".format(scale_3d)] = fov_mask
    return data

def predict(img):
    img_W, img_H = 640, 480
    img = np.array(img, dtype=np.float32, copy=False) / 255.0

    normalize_rgb = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize(
                mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            ),
        ]
    )
    img = normalize_rgb(img)

    batch = get_projections(img_W, img_H)
    batch["img"] = img
    for k in batch:
        batch[k] = batch[k].unsqueeze(0)  # .cuda()

    pred = model(batch).squeeze()
    y_pred = torch.softmax(pred["ssc_logit"], dim=1).detach().cpu().numpy()
    cam_pose = np.asarray([[ 9.6699458e-01,  4.2662762e-02,  2.5120059e-01,  0.0000000e+00],
       [-2.5147417e-01,  1.0867463e-03,  9.6786356e-01,  0.0000000e+00],
       [ 4.1018680e-02, -9.9908894e-01,  1.1779292e-02,  1.1794727e+00],
       [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00,  1.0000000e+00]])
    vox_origin = np.array([-1.54591799,  0.8907361 , -0.05 ])
    
    fig = draw(y_pred.squeeze(),cam_pose, vox_origin)

    return fig


description = """
MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
Due to the <b>CPU-only</b> inference, it might take up to 20s to predict a scene. \n
The output is <b>downsampled by 2</b> for faster rendering. <b>Darker</b> colors represent the <b>scenery outside the Field of View</b>, i.e. not visible on the image.
<center>
    <a href="https://astra-vision.github.io/MonoScene/">
        <img style="display:inline" alt="Project page" src="https://img.shields.io/badge/Project%20Page-MonoScene-red">
    </a>
    <a href="https://arxiv.org/abs/2112.00726"><img style="display:inline" src="https://img.shields.io/badge/arXiv%20%2B%20supp-2112.00726-purple"></a>
    <a href="https://github.com/cv-rits/MonoScene"><img style="display:inline" src="https://img.shields.io/github/stars/cv-rits/MonoScene?style=social"></a>
</center>
"""
title = "MonoScene: Monocular 3D Semantic Scene Completion"
article = """
<center>
We also released a <b>smaller</b> MonoScene model (Half resolution - w/o 3D CRP) at: <a href="https://huggingface.co/spaces/CVPR/monoscene_lite">https://huggingface.co/spaces/CVPR/monoscene_lite</a>
    <img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene&left_color=darkmagenta&right_color=purple' alt='visitor badge'>
</center>
"""

examples = [
    'images/08/3-1.jpg',
    'images/08/001385.jpg',
    'images/08/000295.jpg',
    'images/08/002505.jpg',
    'images/08/000085.jpg',
    'images/08/000290.jpg',
    'images/08/000465.jpg',
    'images/08/000790.jpg',
    'images/08/001005.jpg',
    'images/08/001380.jpg',
    'images/08/001530.jpg',
    'images/08/002360.jpg',
    'images/08/004059.jpg',
    'images/08/003149.jpg',
    'images/08/001446.jpg',
    'images/08/000010.jpg',
    'images/08/001122.jpg',
    'images/08/003533.jpg',
    'images/08/003365.jpg',
    'images/08/002944.jpg',
    'images/08/000822.jpg',
    'images/08/000103.jpg',
    'images/08/002716.jpg',
    'images/08/000187.jpg',
    'images/08/002128.jpg',
    'images/08/000511.jpg',
    'images/08/000618.jpg',
    'images/08/002010.jpg',
    'images/08/000234.jpg',
    'images/08/001842.jpg',
    'images/08/001687.jpg',
    'images/08/003929.jpg',
    'images/08/002272.jpg',
]


demo = gr.Interface(
    predict,
    gr.Image(shape=(1220, 370)),
    gr.Plot(),
    article=article,
    title=title,
    enable_queue=True,
    cache_examples=False,
    live=False,
    examples=examples,
    description=description)


demo.launch(enable_queue=True, debug=False)