Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput, DDIMScheduler | |
from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
from diffusers.configuration_utils import register_to_config, ConfigMixin | |
import pdb | |
class HEURI_DDIMScheduler(DDIMScheduler, SchedulerMixin, ConfigMixin): | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. | |
""" | |
if num_inference_steps > self.config.num_train_timesteps: | |
raise ValueError( | |
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
f" maximal {self.config.num_train_timesteps} timesteps." | |
) | |
self.num_inference_steps = num_inference_steps | |
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 | |
if self.config.timestep_spacing == "linspace": | |
timesteps = ( | |
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps) | |
.round()[::-1] | |
.copy() | |
.astype(np.int64) | |
) | |
elif self.config.timestep_spacing == "leading": | |
step_ratio = self.config.num_train_timesteps // self.num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) | |
timesteps += self.config.steps_offset | |
elif self.config.timestep_spacing == "trailing": | |
step_ratio = self.config.num_train_timesteps / self.num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) | |
timesteps -= 1 | |
else: | |
raise ValueError( | |
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'." | |
) | |
timesteps = torch.from_numpy(timesteps).to(device) | |
naive_sampling_step = num_inference_steps //2 | |
self.naive_sampling_step = naive_sampling_step | |
timesteps[:naive_sampling_step] = timesteps[naive_sampling_step] # refine on step 5 for 5 steps, then backward from step 6 | |
timesteps = [timestep + 1 for timestep in timesteps] | |
self.timesteps = timesteps | |
self.gap = self.config.num_train_timesteps // self.num_inference_steps | |
self.prev_timesteps = [timestep for timestep in self.timesteps[1:]] | |
self.prev_timesteps.append(torch.zeros_like(self.prev_timesteps[-1])) | |
def step( | |
self, | |
model_output: torch.Tensor, | |
timestep: int, | |
prev_timestep: int, | |
sample: torch.Tensor, | |
eta: float = 0.0, | |
use_clipped_model_output: bool = False, | |
generator=None, | |
cur_step=None, | |
gauss_latent=None, | |
variance_noise: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
) -> Union[DDIMSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.Tensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
pre_timestep (`float`): | |
next_timestep | |
sample (`torch.Tensor`): | |
A current instance of a sample created by the diffusion process. | |
eta (`float`): | |
The weight of noise for added noise in diffusion step. | |
use_clipped_model_output (`bool`, defaults to `False`): | |
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary | |
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no | |
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and | |
`use_clipped_model_output` has no effect. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
variance_noise (`torch.Tensor`): | |
Alternative to generating noise with `generator` by directly providing the noise for the variance | |
itself. Useful for methods such as [`CycleDiffusion`]. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a | |
tuple is returned where the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf | |
# Ideally, read DDIM paper in-detail understanding | |
# Notation (<variable name> -> <name in paper> | |
# - pred_noise_t -> e_theta(x_t, t) | |
# - pred_original_sample -> f_theta(x_t, t) or x_0 | |
# - std_dev_t -> sigma_t | |
# - eta -> η | |
# - pred_sample_direction -> "direction pointing to x_t" | |
# - pred_prev_sample -> "x_t-1" | |
# 1. get previous step value (=t-1) | |
# trick from heuri_sampling | |
if cur_step == self.naive_sampling_step and timestep == prev_timestep: | |
timestep += self.gap | |
prev_timestep = prev_timestep # NOTE naive sampling | |
# 2. compute alphas, betas | |
alpha_prod_t = self.alphas_cumprod[timestep] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
# 3. compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
if self.config.prediction_type == "epsilon": | |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
pred_epsilon = model_output | |
elif self.config.prediction_type == "sample": | |
pred_original_sample = model_output | |
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
elif self.config.prediction_type == "v_prediction": | |
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction`" | |
) | |
# 4. Clip or threshold "predicted x_0" | |
if self.config.thresholding: | |
pred_original_sample = self._threshold_sample(pred_original_sample) | |
# 5. compute variance: "sigma_t(η)" -> see formula (16) | |
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
variance = self._get_variance(timestep, prev_timestep) | |
std_dev_t = eta * variance ** (0.5) | |
if use_clipped_model_output: | |
# the pred_epsilon is always re-derived from the clipped x_0 in Glide | |
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon | |
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
if gauss_latent == None: | |
gauss_latent = torch.randn_like(pred_original_sample) | |
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
if eta > 0: | |
if variance_noise is not None and generator is not None: | |
raise ValueError( | |
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or" | |
" `variance_noise` stays `None`." | |
) | |
if variance_noise is None: | |
variance_noise = randn_tensor( | |
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype | |
) | |
variance = std_dev_t * variance_noise | |
prev_sample = prev_sample + variance | |
if cur_step < self.naive_sampling_step: | |
prev_sample = self.add_noise(pred_original_sample, gauss_latent, timestep) | |
if not return_dict: | |
return (prev_sample,) | |
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
def add_noise( | |
self, | |
original_samples: torch.Tensor, | |
noise: torch.Tensor, | |
timesteps: torch.IntTensor, | |
) -> torch.Tensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement | |
# for the subsequent add_noise calls | |
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) | |
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) | |
timesteps = timesteps.to(original_samples.device) | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples |