Lagent / lagent /llms /sensenova.py
Superkingjcj's picture
Upload 111 files
e679d69 verified
raw
history blame
14.7 kB
import json
import os
import time
import warnings
from concurrent.futures import ThreadPoolExecutor
from logging import getLogger
from threading import Lock
from typing import Dict, Generator, List, Optional, Tuple, Union
import requests
from lagent.schema import ModelStatusCode
from lagent.utils.util import filter_suffix
from .base_api import BaseAPILLM
warnings.simplefilter('default')
SENSENOVA_API_BASE = 'https://api.sensenova.cn/v1/llm/chat-completions'
sensechat_models = {'SenseChat-5': 131072, 'SenseChat-5-Cantonese': 32768}
class SensenovaAPI(BaseAPILLM):
"""Model wrapper around SenseTime's models.
Args:
model_type (str): The name of SenseTime's model.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): SenseTime key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $SENSENOVA_API_KEY. If it's a list, the keys will be
used in round-robin manner. Defaults to 'ENV'.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
sensenova_api_base (str): The base url of SenseTime's API. Defaults to
'https://api.sensenova.cn/v1/llm/chat-completions'.
gen_params: Default generation configuration which could be overridden
on the fly of generation.
"""
is_api: bool = True
def __init__(
self,
model_type: str = 'SenseChat-5-Cantonese',
retry: int = 2,
json_mode: bool = False,
key: Union[str, List[str]] = 'ENV',
meta_template: Optional[Dict] = [
dict(role='system', api_role='system'),
dict(role='user', api_role='user'),
dict(role='assistant', api_role='assistant'),
dict(role='environment', api_role='system'),
],
sensenova_api_base: str = SENSENOVA_API_BASE,
proxies: Optional[Dict] = None,
**gen_params,
):
super().__init__(
model_type=model_type,
meta_template=meta_template,
retry=retry,
**gen_params,
)
self.logger = getLogger(__name__)
if isinstance(key, str):
# First, apply for SenseNova's ak and sk from SenseTime staff
# Then, generated SENSENOVA_API_KEY using lagent.utils.gen_key.auto_gen_jwt_token(ak, sk)
self.keys = [
os.getenv('SENSENOVA_API_KEY') if key == 'ENV' else key
]
else:
self.keys = key
# record invalid keys and skip them when requesting API
# - keys have insufficient_quota
self.invalid_keys = set()
self.key_ctr = 0
self.url = sensenova_api_base
self.model_type = model_type
self.proxies = proxies
self.json_mode = json_mode
def chat(
self,
inputs: Union[List[dict], List[List[dict]]],
**gen_params,
) -> Union[str, List[str]]:
"""Generate responses given the contexts.
Args:
inputs (Union[List[dict], List[List[dict]]]): a list of messages
or list of lists of messages
gen_params: additional generation configuration
Returns:
Union[str, List[str]]: generated string(s)
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = {**self.gen_params, **gen_params}
with ThreadPoolExecutor(max_workers=20) as executor:
tasks = [
executor.submit(self._chat,
self.template_parser._prompt2api(messages),
**gen_params)
for messages in (
[inputs] if isinstance(inputs[0], dict) else inputs)
]
ret = [task.result() for task in tasks]
return ret[0] if isinstance(inputs[0], dict) else ret
def stream_chat(
self,
inputs: List[dict],
**gen_params,
) -> Generator[Tuple[ModelStatusCode, str, Optional[str]], None, None]:
"""Generate responses given the contexts.
Args:
inputs (List[dict]): a list of messages
gen_params: additional generation configuration
Yields:
Tuple[ModelStatusCode, str, Optional[str]]: Status code, generated string, and optional metadata
"""
assert isinstance(inputs, list)
if 'max_tokens' in gen_params:
raise NotImplementedError('unsupported parameter: max_tokens')
gen_params = self.update_gen_params(**gen_params)
gen_params['stream'] = True
resp = ''
finished = False
stop_words = gen_params.get('stop_words') or []
messages = self.template_parser._prompt2api(inputs)
for text in self._stream_chat(messages, **gen_params):
# TODO 测试 resp = text 还是 resp += text
resp += text
if not resp:
continue
# remove stop_words
for sw in stop_words:
if sw in resp:
resp = filter_suffix(resp, stop_words)
finished = True
break
yield ModelStatusCode.STREAM_ING, resp, None
if finished:
break
yield ModelStatusCode.END, resp, None
def _chat(self, messages: List[dict], **gen_params) -> str:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode,
)
max_num_retries = 0
while max_num_retries < self.retry:
self._wait()
with Lock():
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
response = dict()
try:
raw_response = requests.post(
self.url,
headers=header,
data=json.dumps(data),
proxies=self.proxies,
)
response = raw_response.json()
return response['choices'][0]['message']['content'].strip()
except requests.ConnectionError:
print('Got connection error, retrying...')
continue
except requests.JSONDecodeError:
print('JsonDecode error, got', str(raw_response.content))
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
print('Find error message in response: ',
str(response['error']))
except Exception as error:
print(str(error))
max_num_retries += 1
raise RuntimeError('Calling SenseTime failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def _stream_chat(self, messages: List[dict], **gen_params) -> str:
"""Generate completion from a list of templates.
Args:
messages (List[dict]): a list of prompt dictionaries
gen_params: additional generation configuration
Returns:
str: The generated string.
"""
def streaming(raw_response):
for chunk in raw_response.iter_lines():
if chunk:
try:
decoded_chunk = chunk.decode('utf-8')
# print(f"Decoded chunk: {decoded_chunk}")
if decoded_chunk == 'data:[DONE]':
# print("Stream ended")
break
if decoded_chunk.startswith('data:'):
json_str = decoded_chunk[5:]
chunk_data = json.loads(json_str)
if 'data' in chunk_data and 'choices' in chunk_data[
'data']:
choice = chunk_data['data']['choices'][0]
if 'delta' in choice:
content = choice['delta']
yield content
else:
print(f'Unexpected format: {decoded_chunk}')
except json.JSONDecodeError as e:
print(f'JSON parsing error: {e}')
except Exception as e:
print(
f'An error occurred while processing the chunk: {e}'
)
assert isinstance(messages, list)
header, data = self.generate_request_data(
model_type=self.model_type,
messages=messages,
gen_params=gen_params,
json_mode=self.json_mode,
)
max_num_retries = 0
while max_num_retries < self.retry:
if len(self.invalid_keys) == len(self.keys):
raise RuntimeError('All keys have insufficient quota.')
# find the next valid key
while True:
self.key_ctr += 1
if self.key_ctr == len(self.keys):
self.key_ctr = 0
if self.keys[self.key_ctr] not in self.invalid_keys:
break
key = self.keys[self.key_ctr]
header['Authorization'] = f'Bearer {key}'
response = dict()
try:
raw_response = requests.post(
self.url,
headers=header,
data=json.dumps(data),
proxies=self.proxies,
)
return streaming(raw_response)
except requests.ConnectionError:
print('Got connection error, retrying...')
continue
except requests.JSONDecodeError:
print('JsonDecode error, got', str(raw_response.content))
continue
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(1)
continue
elif response['error']['code'] == 'insufficient_quota':
self.invalid_keys.add(key)
self.logger.warn(f'insufficient_quota key: {key}')
continue
print('Find error message in response: ',
str(response['error']))
except Exception as error:
print(str(error))
max_num_retries += 1
raise RuntimeError('Calling SenseTime failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def generate_request_data(self,
model_type,
messages,
gen_params,
json_mode=False):
"""
Generates the request data for different model types.
Args:
model_type (str): The type of the model (e.g., 'sense').
messages (list): The list of messages to be sent to the model.
gen_params (dict): The generation parameters.
json_mode (bool): Flag to determine if the response format should be JSON.
Returns:
tuple: A tuple containing the header and the request data.
"""
# Copy generation parameters to avoid modifying the original dictionary
gen_params = gen_params.copy()
# Hold out 100 tokens due to potential errors in token calculation
max_tokens = min(gen_params.pop('max_new_tokens'), 4096)
if max_tokens <= 0:
return '', ''
# Initialize the header
header = {
'content-type': 'application/json',
}
# Common parameters processing
gen_params['max_tokens'] = max_tokens
if 'stop_words' in gen_params:
gen_params['stop'] = gen_params.pop('stop_words')
if 'repetition_penalty' in gen_params:
gen_params['frequency_penalty'] = gen_params.pop(
'repetition_penalty')
# Model-specific processing
data = {}
if model_type.lower().startswith('sense'):
gen_params.pop('skip_special_tokens', None)
gen_params.pop('session_id', None)
data = {
'model': model_type,
'messages': messages,
'n': 1,
**gen_params
}
if json_mode:
data['response_format'] = {'type': 'json_object'}
else:
raise NotImplementedError(
f'Model type {model_type} is not supported')
return header, data
def tokenize(self, prompt: str) -> list:
"""Tokenize the input prompt.
Args:
prompt (str): Input string.
Returns:
list: token ids
"""
import tiktoken
self.tiktoken = tiktoken
enc = self.tiktoken.encoding_for_model('gpt-4o')
return enc.encode(prompt)