Spaces:
Running
Running
from datasets import load_dataset | |
import datasets | |
import json | |
from mmcv import Config | |
import numpy | |
import torch | |
from risk_biased.utils.waymo_dataloader import WaymoDataloaders | |
config_path = "risk_biased/config/waymo_config.py" | |
cfg = Config.fromfile(config_path) | |
dataloaders = WaymoDataloaders(cfg) | |
sample_dataloader = dataloaders.sample_dataloader() | |
( | |
x, | |
mask_x, | |
y, | |
mask_y, | |
mask_loss, | |
map_data, | |
mask_map, | |
offset, | |
x_ego, | |
y_ego, | |
) = sample_dataloader.collate_fn(sample_dataloader.dataset) | |
# dataset = load_dataset("json", data_files="../risk_biased_dataset/data.json", split="test", field="x") | |
# dataset = load_from_disk("../risk_biased_dataset/data.json") | |
dataset = load_dataset("jmercat/risk_biased_dataset", split="test") | |
x_c = torch.from_numpy(numpy.array(dataset["x"]).astype(numpy.float32)) | |
mask_x_c = torch.from_numpy(numpy.array(dataset["mask_x"]).astype(numpy.bool_)) | |
y_c = torch.from_numpy(numpy.array(dataset["y"]).astype(numpy.float32)) | |
mask_y_c = torch.from_numpy(numpy.array(dataset["mask_y"]).astype(numpy.bool_)) | |
mask_loss_c = torch.from_numpy( numpy.array(dataset["mask_loss"]).astype(numpy.bool_)) | |
map_data_c = torch.from_numpy(numpy.array(dataset["map_data"]).astype(numpy.float32)) | |
mask_map_c = torch.from_numpy(numpy.array(dataset["mask_map"]).astype(numpy.bool_)) | |
offset_c = torch.from_numpy(numpy.array(dataset["offset"]).astype(numpy.float32)) | |
x_ego_c = torch.from_numpy(numpy.array(dataset["x_ego"]).astype(numpy.float32)) | |
y_ego_c = torch.from_numpy(numpy.array(dataset["y_ego"]).astype(numpy.float32)) | |
assert torch.allclose(x, x_c) | |
assert torch.allclose(mask_x, mask_x_c) | |
assert torch.allclose(y, y_c) | |
assert torch.allclose(mask_y, mask_y_c) | |
assert torch.allclose(mask_loss, mask_loss_c) | |
assert torch.allclose(map_data, map_data_c) | |
assert torch.allclose(mask_map, mask_map_c) | |
assert torch.allclose(offset, offset_c) | |
assert torch.allclose(x_ego, x_ego_c) | |
assert torch.allclose(y_ego, y_ego_c) | |
print("All good!") | |