File size: 26,149 Bytes
e83d3d6
 
 
 
 
4d22a83
 
e83d3d6
4d22a83
 
e83d3d6
 
 
 
 
 
 
 
 
 
 
1a23e33
e83d3d6
 
caaf80c
 
 
e83d3d6
 
 
 
344407b
93ef4d5
195942f
1a87ac9
93ef4d5
f6cc227
d17ac5b
50238de
f6cc227
 
4817884
a0a9740
f6cc227
 
 
 
 
 
75fab0b
ec73a31
 
 
 
 
c5fd5e5
ec73a31
 
 
c5fd5e5
ec73a31
 
 
d17ac5b
f6cc227
 
344407b
 
 
 
 
 
 
 
 
 
e83d3d6
 
 
 
 
 
 
 
0e03fed
 
e83d3d6
 
4d22a83
e83d3d6
5366905
e83d3d6
 
5366905
e83d3d6
 
 
 
5366905
 
e83d3d6
 
 
 
 
 
4d22a83
e83d3d6
 
 
 
 
 
 
 
4d22a83
e83d3d6
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
5366905
e83d3d6
5366905
e83d3d6
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
 
4d22a83
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
ae66a58
b19c065
ae66a58
 
82fd2c3
ae66a58
eade1a5
82fd2c3
 
 
 
 
 
ae66a58
 
 
 
b19c065
e83d3d6
b19c065
f4a2536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82fd2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a2536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82fd2c3
 
 
f4a2536
82fd2c3
 
 
 
f4a2536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82fd2c3
f4a2536
 
 
344407b
b1be04f
42d4e62
75fab0b
 
b19c065
b1be04f
 
 
 
 
e83d3d6
 
 
4d22a83
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
42805da
e83d3d6
 
 
 
 
 
 
42805da
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e03fed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description"
        content="Demo Page of GREAT Score  Neurips 2024.">
  <meta name="keywords" content="GREAT Score, Adversarial robustness, Generative models">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>GREAT Score: Global Robustness Evaluation of
    Adversarial Perturbation using Generative Models</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
        rel="stylesheet">

  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet"
        href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="stylesheet" href="./static/css/custom.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <!-- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> -->
  <script src="https://code.jquery.com/jquery-3.6.0.js"></script>
  <script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>

  <!-- for mathjax support -->
  <!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> -->
  <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>

  <script>
  $(document).ready(function(){
    $('#adaptive-loss-formula-list').on('click', 'a', function(e) {
        e.preventDefault();
        if (!$(this).hasClass('selected')) {

            $('.formula-content').hide(200);
            $('.formula-list > a').removeClass('selected');
            $(this).addClass('selected');
            var target = $(this).attr('href');
            $(target).show(200);
        }
    });


    $('#adaptive-dataset').on('click', 'a', function(e) {
        e.preventDefault();
        if (!$(this).hasClass('selected')) {

            $('.interpolation-video-column').hide();
            $('#adaptive-dataset > a').removeClass('selected');
            $(this).addClass('selected');
            var target = $(this).attr('href');
            $(target).show();
        }
    });

  })
  </script>

  <style type="text/css">
    .tg  {border-collapse:collapse;border-spacing:0;}
    .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
      overflow:hidden;padding:10px 5px;word-break:normal;}
    .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
      font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
    .tg .tg-baqh{text-align:center;vertical-align:top}
    .tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
    .tg .tg-2imo{font-style:italic;text-align:center;text-decoration:underline;vertical-align:top}
    </style>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">GREAT Score: Global Robustness Evaluation of
            Adversarial Perturbation using Generative Models</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">
              <a href="#" target="_blank">ZAITANG LI</a><sup>1</sup>,</span>
            <span class="author-block">
              <a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>2</sup>,
            </span>
            <span class="author-block">
              <a href="https://tsungyiho.github.io/" target="_blank">Tsung-Yi Ho</a><sup>1</sup>,
            </span>
          </div>

          <div class="is-size-5 publication-authors">
            <span class="author-block"><sup>1</sup>The Chinese University of Hong Kong,</span>
            <span class="author-block"><sup>2</sup>IBM Research</span>
          </div>

          <div class="column has-text-centered">
            <div class="publication-links">
              <!-- PDF Link. -->
              <span class="link-block">
                <a href="https://arxiv.org/abs/2304.09875" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fas fa-file-pdf"></i>
                  </span>
                  <span>Paper</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://arxiv.org/abs/2304.09875" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="ai ai-arxiv"></i>
                  </span>
                  <span>arXiv</span>
                </a>
              </span>
              <!-- Video Link. -->
              <!-- <span class="link-block">
                <a href="https://www.youtube.com/watch?v=MrKrnHhk8IA" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-youtube"></i>
                  </span>
                  <span>Video</span>
                </a>
              </span> -->
              <!-- Code Link. -->
              <!-- <span class="link-block">
                <a href="https://github.com/google/nerfies" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-github"></i>
                  </span>
                  <span>Code</span>
                  </a>
              </span> -->
            </div>

          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<!-- <section class="hero teaser">
  <div class="container is-max-desktop">
    <div class="hero-body">
      <video id="teaser" autoplay muted loop playsinline height="100%">
        <source src="./static/videos/teaser.mp4"
                type="video/mp4">
      </video>
      <h2 class="subtitle has-text-centered">
        <span class="dnerf">Nerfies</span> turns selfie videos from your phone into
        free-viewpoint
        portraits.
      </h2>
    </div>
  </div>
</section> -->



<section class="section">
  <div class="container is-max-desktop">
    <!-- Abstract. -->
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Abstract</h2>
        <div class="content has-text-justified">
          <p>
            Current studies on adversarial robustness mainly focus on aggregating <i>local</i> robustness results from a set of data samples to evaluate and rank different models. However, the local statistics may not well represent the true <i>global</i> robustness of the underlying unknown data distribution. To address this challenge, this paper makes the first attempt to present a new framework, called <strong>GREAT Score</strong>, for global robustness evaluation of adversarial perturbation using generative models. Formally, GREAT Score carries the physical meaning of a global statistic capturing a mean certified attack-proof perturbation level over all samples drawn from a generative model. For finite-sample evaluation, we also derive a probabilistic guarantee on the sample complexity and the difference between the sample mean and the true mean. GREAT Score has several advantages: (1) Robustness evaluations using GREAT Score are efficient and scalable to large models, by sparing the need of running adversarial attacks. In particular, we show high correlation and significantly reduced computation cost of GREAT Score when compared to the attack-based model ranking on RobustBench<sup>1</sup>. (2) The use of generative models facilitates the approximation of the unknown data distribution. In our ablation study with different generative adversarial networks (GANs), we observe consistency between global robustness evaluation and the quality of GANs. (3) GREAT Score can be used for remote auditing of privacy-sensitive black-box models, as demonstrated by our robustness evaluation on several online facial recognition services.
          </p>
        </div>

        <!-- References -->
        <div class="content">
          <p>
            <sup>1</sup> Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., & Hein, M. (2021). RobustBench: a standardized adversarial robustness benchmark. In <i>Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)</i>. <a href="https://openreview.net/forum?id=SSKZPJCt7B" target="_blank">https://openreview.net/forum?id=SSKZPJCt7B</a>
          </p>
        </div>
      </div>
    </div>
    <!--/ Abstract. -->
  </div>
</section>


<!-- Overview -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">Method Overview of GREAT Score</h2>
    <div class="columns is-centered">
      <div class="column container-centered">
        <img src="./static/images/GREAT_Score_overview.png" alt="Method Overview of GREAT Score"/>
        <p><strong>Figure 1. Overview of GREAT Score.</strong> The process involves three main steps: 
        (1) Data Generation: We use a generative model to create synthetic samples. 
        (2) Local Robustness Evaluation: For each generated sample, we calculate a local robustness score based on the classifier's confidence. 
        (3) Global Robustness Estimation: We aggregate the local scores to estimate the overall robustness of the classifier. 
        This method provides a certified lower bound on the true global robustness without requiring access to the original dataset or exhaustive adversarial attacks.</p>
      </div>
    </div>
  </div>
</section>
<!-- Overview -->




<!-- Robustness Certificate Definition -->
<section class="section">

  <div class="container is-max-desktop">
    <h2 class="title is-3">Robustness Certificate Definition</h2>

    <div class="columns is-centered">
      <div class="column container formula">
        <p>
          GREAT Score is designed to evaluate the global robustness of classifiers against adversarial attacks. It uses generative models to estimate a certified lower bound on true global robustness. For a K-way classifier f, we define a local robustness score g(G(z)) for a generated sample G(z), where G is a generator and z is sampled from a standard Gaussian distribution. This score measures the confidence gap between the correct class prediction and the most likely incorrect class. The GREAT Score, defined as the expectation of g(G(z)) over z, provides a certified lower bound on the true global robustness with respect to the data distribution learned by the generative model. This approach allows us to estimate global robustness without knowing the exact data distribution or minimal perturbations for each sample.
        </p>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column container-centered">
        <div id="adaptive-loss-formula" class="container">
          <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
            <a href=".true-global-robustness" class="selected">True Global Robustness</a>
            <a href=".global-robustness-estimate">Global Robustness Estimate</a>
            <a href=".local-robustness-score">Local Robustness Score</a>
            <div style="clear: both"></div>
          </div>
          <div class="row align-items-center adaptive-loss-formula-content">
            <span class="formula true-global-robustness formula-content">
              $$
              \displaystyle 
              \Omega(f) = \mathbb{E}_{x\sim P}[\Delta_{min}(x)]= \int_{x \sim P} \Delta_{\min}(x) p(x)dx
              $$
            </span>
            <span class="formula global-robustness-estimate formula-content" style="display: none;">
              $$
              \displaystyle
              \widehat{\Omega}(f) = \mathbb{E}_{x\sim P}[g(x)]= \int_{x \sim P} g(x) p(x)dx
              $$
            </span>
            <span class="formula local-robustness-score formula-content" style="display: none;">
              $$
              \displaystyle
              g\left(G(z)\right) = \sqrt{\cfrac{\pi}{2}}  \cdot \max\{  f_c(G(z)) - \max_{k \in \{1,\ldots,K\},k\neq c} f_k(G(z)),0 \}
              $$
            </span>
          </div>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column container adaptive-loss-formula-content">
        <p class="formula true-global-robustness formula-content">
          where f is a classifier, P is a data distribution, and Δ<sub>min</sub>(x) is the minimal perturbation for a sample x.
        </p>
        <p class="formula global-robustness-estimate formula-content" style="display: none">
          where g(x) is a local robustness statistic, and this estimate is used when the exact probability density function of P and local minimal perturbations are unknown.
        </p>
        <p class="formula local-robustness-score formula-content" style="display: none;">
          where G(z) is a generated data sample, f<sub>c</sub> is the confidence score for the correct class c, and f<sub>k</sub> are the confidence scores for other classes.
        </p>
      </div>
    </div>



  </section>



  <!-- Results -->
  <section class="section">
    <div class="container is-max-desktop">
      <h2 class="title is-3">GREAT Score Results</h2>
      <div class="columns is-centered">
        <div class="column container-centered">
          <table class="tg" border="1" style="width:100%;">
            <caption><strong>Table 1.</strong> Comparison of (Calibrated) GREAT Score v.s. minimal distortion found by CW attack on CIFAR-10. The results are averaged over 500 samples from StyleGAN2.</caption>
            <thead>
              <tr>
                <th class="tg-amwm">Model Name</th>
                <th class="tg-baqh">RobustBench Accuracy(%)</th>
                <th class="tg-baqh">AutoAttack Accuracy(%)</th>
                <th class="tg-baqh">GREAT Score</th>
                <th class="tg-baqh">Calibrated GREAT Score</th>
                <th class="tg-baqh">CW Distortion</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="tg-baqh">Rebuffi_extra</td>
                <td class="tg-baqh">82.32</td>
                <td class="tg-baqh">87.20</td>
                <td class="tg-baqh">0.507</td>
                <td class="tg-baqh">1.216</td>
                <td class="tg-baqh">1.859</td>
              </tr>
              <tr>
                <td class="tg-baqh">Gowal_extra</td>
                <td class="tg-baqh">80.53</td>
                <td class="tg-baqh">85.60</td>
                <td class="tg-baqh">0.534</td>
                <td class="tg-baqh">1.213</td>
                <td class="tg-baqh">1.324</td>
              </tr>
              <tr>
                <td class="tg-baqh">Rebuffi_70_ddpm</td>
                <td class="tg-baqh">80.42</td>
                <td class="tg-baqh">90.60</td>
                <td class="tg-baqh">0.451</td>
                <td class="tg-baqh">1.208</td>
                <td class="tg-baqh">1.943</td>
              </tr>
              <tr>
                <td class="tg-baqh">Rebuffi_28_ddpm</td>
                <td class="tg-baqh">78.80</td>
                <td class="tg-baqh">90.00</td>
                <td class="tg-baqh">0.424</td>
                <td class="tg-baqh">1.214</td>
                <td class="tg-baqh">1.796</td>
              </tr>
              <tr>
                <td class="tg-baqh">Augustin_WRN_extra</td>
                <td class="tg-baqh">78.79</td>
                <td class="tg-baqh">86.20</td>
                <td class="tg-baqh">0.525</td>
                <td class="tg-baqh">1.206</td>
                <td class="tg-baqh">1.340</td>
              </tr>
              <tr>
                <td class="tg-baqh">Sehwag</td>
                <td class="tg-baqh">77.24</td>
                <td class="tg-baqh">89.20</td>
                <td class="tg-baqh">0.227</td>
                <td class="tg-baqh">1.143</td>
                <td class="tg-baqh">1.392</td>
              </tr>
              <tr>
                <td class="tg-baqh">Augustin_WRN</td>
                <td class="tg-baqh">76.25</td>
                <td class="tg-baqh">86.40</td>
                <td class="tg-baqh">0.583</td>
                <td class="tg-baqh">1.206</td>
                <td class="tg-baqh">1.332</td>
              </tr>
              <tr>
                <td class="tg-baqh">Rade</td>
                <td class="tg-baqh">76.15</td>
                <td class="tg-baqh">86.60</td>
                <td class="tg-baqh">0.413</td>
                <td class="tg-baqh">1.200</td>
                <td class="tg-baqh">1.486</td>
              </tr>
              <tr>
                <td class="tg-baqh">Rebuffi_R18</td>
                <td class="tg-baqh">75.86</td>
                <td class="tg-baqh">87.60</td>
                <td class="tg-baqh">0.369</td>
                <td class="tg-baqh">1.210</td>
                <td class="tg-baqh">1.413</td>
              </tr>
              <tr>
                <td class="tg-baqh">Gowal</td>
                <td class="tg-baqh">74.50</td>
                <td class="tg-baqh">86.40</td>
                <td class="tg-baqh">0.124</td>
                <td class="tg-baqh">1.116</td>
                <td class="tg-baqh">1.253</td>
              </tr>
              <tr>
                <td class="tg-baqh">Sehwag_R18</td>
                <td class="tg-baqh">74.41</td>
                <td class="tg-baqh">88.60</td>
                <td class="tg-baqh">0.236</td>
                <td class="tg-baqh">1.135</td>
                <td class="tg-baqh">1.343</td>
              </tr>
              <tr>
                <td class="tg-baqh">Wu2020Adversarial</td>
                <td class="tg-baqh">73.66</td>
                <td class="tg-baqh">84.60</td>
                <td class="tg-baqh">0.128</td>
                <td class="tg-baqh">1.110</td>
                <td class="tg-baqh">1.369</td>
              </tr>
              <tr>
                <td class="tg-baqh">Augustin2020Adversarial</td>
                <td class="tg-baqh">72.91</td>
                <td class="tg-baqh">85.20</td>
                <td class="tg-baqh">0.569</td>
                <td class="tg-baqh">1.199</td>
                <td class="tg-baqh">1.285</td>
              </tr>
              <tr>
                <td class="tg-baqh">Engstrom2019Robustness</td>
                <td class="tg-baqh">69.24</td>
                <td class="tg-baqh">82.20</td>
                <td class="tg-baqh">0.160</td>
                <td class="tg-baqh">1.020</td>
                <td class="tg-baqh">1.084</td>
              </tr>
              <tr>
                <td class="tg-baqh">Rice2020Overfitting</td>
                <td class="tg-baqh">67.68</td>
                <td class="tg-baqh">81.80</td>
                <td class="tg-baqh">0.152</td>
                <td class="tg-baqh">1.040</td>
                <td class="tg-baqh">1.097</td>
              </tr>
              <tr>
                <td class="tg-baqh">Rony2019Decoupling</td>
                <td class="tg-baqh">66.44</td>
                <td class="tg-baqh">79.20</td>
                <td class="tg-baqh">0.275</td>
                <td class="tg-baqh">1.101</td>
                <td class="tg-baqh">1.165</td>
              </tr>
              <tr>
                <td class="tg-baqh">Ding2020MMA</td>
                <td class="tg-baqh">66.09</td>
                <td class="tg-baqh">77.60</td>
                <td class="tg-baqh">0.112</td>
                <td class="tg-baqh">0.909</td>
                <td class="tg-baqh">1.095</td>
              </tr>
            </tbody>
        </table>
        </div>
      </div>
    </div>
  </section>
  <!-- Results -->

<!-- Model Ranking Comparison Section -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">Model Ranking Comparison</h2>
    <div class="columns is-centered">
      <div class="column is-full-width">
        <div class="content has-text-justified">
          <table class="table is-bordered is-striped is-narrow is-hoverable is-fullwidth">
            <caption><strong>Table 2.</strong> Spearman's rank correlation coefficient on CIFAR-10 using GREAT Score, RobustBench (with test set), and Auto-Attack (with generated samples).</caption>
            <thead>
              <tr>
                <th></th>
                <th>Uncalibrated</th>
                <th>Calibrated</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td>GREAT Score vs. RobustBench Correlation</td>
                <td>0.6618</td>
                <td>0.8971</td>
              </tr>
              <tr>
                <td>GREAT Score vs. AutoAttack Correlation</td>
                <td>0.3690</td>
                <td>0.6941</td>
              </tr>
              <tr>
                <td>RobustBench vs. AutoAttack Correlation</td>
                <td>0.7296</td>
                <td>0.7296</td>
              </tr>
            </tbody>
          </table>
          
          <p>
            We compare the model ranking on CIFAR-10 using GREAT Score (evaluated with generated samples), RobustBench (evaluated with Auto-Attack on the test set), and Auto-Attack (evaluated with Auto-Attack on generated samples). 
            Table 2 presents their mutual rank correlation (higher value means more aligned ranking) with calibrated and uncalibrated versions.
            We note that there is an innate discrepancy between Spearman's rank correlation coefficient (way below 1) of RobustBench vs. Auto-Attack, which means Auto-Attack will give inconsistent model rankings when evaluated on different data samples. In addition, GREAT Score measures <em>classification margin</em>, while AutoAttack measures <em>accuracy</em> under a fixed perturbation budget ε. AutoAttack's ranking will change if we use different ε values. E.g., comparing the ranking of ε=0.3 and ε=0.7 on 10000 CIFAR-10 test images for AutoAttack, the Spearman's correlation is only 0.9485. Therefore, we argue that GREAT Score and AutoAttack are <em>complementary</em> evaluation metrics and they don't need to match perfectly.
            Despite their discrepancy, before calibration, the correlation between GREAT Score and RobustBench yields a similar value. With calibration, there is a significant improvement in rank correlation between GREAT Score to Robustbench and Auto-Attack, respectively.
          </p>
        </div>
      </div>
    </div>
  </div>
</section>
<!-- Model Ranking Comparison Section -->

<!-- GREAT Score vs CW Attack Comparison Section -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">GREAT Score vs CW Attack Comparison</h2>
    <div class="columns is-centered">
      <div class="column container-centered">
        <div>
          <img src="./static/images/new_figure_2_2.png"
               class="method_overview"
               alt="Comparison of local GREAT Score and CW attack"/>
          <p>
            <strong>Figure 2.</strong> Comparison of local GREAT Score and CW attack in L<sub>2</sub> perturbation on CIFAR-10 with Rebuffi_extra model. 
            The x-axis is the image id. The result shows the local GREAT Score is indeed a lower bound of the perturbation level found by CW attack.
          </p>
        </div>
      </div>
    </div>
  </div>
</section>
<!-- GREAT Score vs CW Attack Comparison Section -->














<section class="section" id="BibTeX">
  <div class="container is-max-desktop content">
    <h2 class="title">BibTeX</h2>
    <pre><code>@article{li2024greatscore,
  title     = {GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models},
  author    = {Zaitang, Li and Pin-Yu, Chen and Tsung-Yi, Ho},
  journal   = {NeurIPS},
  year      = {2024},
}</code></pre>
  </div>
</section>


<footer class="footer">
  <div class="container">
    <!-- <div class="content has-text-centered">
      <a class="icon-link" target="_blank"
         href="./static/videos/nerfies_paper.pdf">
        <i class="fas fa-file-pdf"></i>
      </a>
      <a class="icon-link" href="https://github.com/keunhong" target="_blank" class="external-link" disabled>
        <i class="fab fa-github"></i>
      </a>
    </div> -->
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website is licensed under a <a rel="license" target="_blank"
                                                href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
            Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
          <p>
            This means you are free to borrow the <a target="_blank"
              href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
            we just ask that you link back to this page in the footer.
            Please remember to remove the analytics code included in the header of the website which
            you do not want on your website.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>