Spaces:
Running
Running
File size: 9,651 Bytes
85ac990 b42b884 85ac990 b42b884 85ac990 2c1f9dd 85ac990 0993d5e 85ac990 2c1f9dd 85ac990 0993d5e 85ac990 0993d5e 85ac990 0993d5e 85ac990 cdf1241 2c1f9dd cdf1241 2c1f9dd b0ade1a 2c1f9dd b0ade1a 18cc46a b0ade1a 2c1f9dd b0ade1a 2c1f9dd b0ade1a 2c1f9dd cdf1241 2c1f9dd cdf1241 b0ade1a cdf1241 2c1f9dd 18cc46a cdf1241 447f97e cdf1241 183f8cd 2c1f9dd cdf1241 afaacd1 cdf1241 183f8cd 2c1f9dd 447f97e af84d9b b0ade1a 2c1f9dd af84d9b 2c1f9dd af84d9b 447f97e b0ade1a af84d9b afaacd1 af84d9b cdf1241 447f97e cdf1241 183f8cd 18cc46a b0ade1a 18cc46a cdf1241 85ac990 b0ade1a 85ac990 b0ade1a 85ac990 8b10b79 baf0dee 8b10b79 5a2db0a 2c1f9dd b0ade1a 2c1f9dd b0ade1a 8471e78 b0ade1a 2c1f9dd 85ac990 5a2db0a 18cc46a 5a2db0a 18cc46a afaacd1 18cc46a afaacd1 18cc46a 85ac990 b0ade1a 85ac990 baf0dee 5a2db0a b0ade1a 85ac990 18cc46a afaacd1 85ac990 18cc46a 85ac990 447f97e 85ac990 183f8cd 2c1f9dd 3854a1f afaacd1 85ac990 b0ade1a 18cc46a 85ac990 183f8cd 2c1f9dd afaacd1 af84d9b afaacd1 2c1f9dd af84d9b 2c1f9dd af84d9b 447f97e b0ade1a af84d9b afaacd1 af84d9b 85ac990 447f97e 204391c 3854a1f b0ade1a 3854a1f 8b10b79 3854a1f b0ade1a 3854a1f 204391c 85ac990 5a2db0a 3854a1f 5a2db0a 85ac990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
from __future__ import annotations
from pathlib import Path
from typing import Literal
import click
__all__ = ["cli_wrapper"]
DONE_STR = click.style("DONE", fg="green")
@click.group()
def cli() -> None: ...
@cli.command()
@click.option(
"--model",
"model_path",
required=True,
help="Path to the trained model",
type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.option(
"--share/--no-share",
default=False,
help="Whether to create a shareable link",
)
def gui(model_path: Path, share: bool) -> None:
"""Launch the Gradio GUI"""
import os
from app.gui import launch_gui
os.environ["MODEL_PATH"] = model_path.as_posix()
launch_gui(share)
@cli.command()
@click.option(
"--model",
"model_path",
required=True,
help="Path to the trained model",
type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.argument("text", nargs=-1)
def predict(model_path: Path, text: list[str]) -> None:
"""Perform sentiment analysis on the provided text.
Note: Piped input takes precedence over the text argument
"""
import sys
import joblib
from app.model import infer_model
text = " ".join(text).strip()
if not sys.stdin.isatty():
piped_text = sys.stdin.read().strip()
text = piped_text or text
if not text:
msg = "No text provided"
raise click.UsageError(msg)
click.echo("Loading model... ", nl=False)
model = joblib.load(model_path)
click.echo(DONE_STR)
click.echo("Performing sentiment analysis... ", nl=False)
prediction = infer_model(model, [text])[0]
# prediction = model.predict([text])[0]
if prediction == 0:
sentiment = click.style("NEGATIVE", fg="red")
elif prediction == 1:
sentiment = click.style("POSITIVE", fg="green")
else:
sentiment = click.style("NEUTRAL", fg="yellow")
click.echo(sentiment)
@cli.command()
@click.option(
"--dataset",
default="test",
help="Dataset to evaluate the model on",
type=click.Choice(["test", "sentiment140", "amazonreviews", "imdb50k"]),
)
@click.option(
"--model",
"model_path",
required=True,
help="Path to the trained model",
type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True, resolve_path=True, path_type=Path),
)
@click.option(
"--cv",
default=5,
help="Number of cross-validation folds",
show_default=True,
type=click.IntRange(1, 50),
)
@click.option(
"--token-batch-size",
default=512,
help="Size of the batches used in tokenization",
show_default=True,
)
@click.option(
"--token-jobs",
default=4,
help="Number of parallel jobs to run for tokenization",
show_default=True,
)
@click.option(
"--eval-jobs",
default=1,
help="Number of parallel jobs to run for evaluation",
show_default=True,
)
@click.option(
"--force-cache",
is_flag=True,
help="Always use the cached tokenized data (if available)",
)
def evaluate(
dataset: Literal["test", "sentiment140", "amazonreviews", "imdb50k"],
model_path: Path,
cv: int,
token_batch_size: int,
token_jobs: int,
eval_jobs: int,
force_cache: bool,
) -> None:
"""Evaluate the model on the the specified dataset"""
import gc
import joblib
import pandas as pd
from app.constants import TOKENIZER_CACHE_DIR
from app.data import load_data, tokenize
from app.model import evaluate_model
from app.utils import deserialize, serialize
token_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_tokenized.pkl"
label_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_labels.pkl"
use_cached_data = False
if token_cache_path.exists():
use_cached_data = force_cache or click.confirm(
f"Found existing tokenized data for '{dataset}'. Use it?",
default=True,
)
if use_cached_data:
click.echo("Loading cached data... ", nl=False)
token_data = pd.Series(deserialize(token_cache_path))
label_data = joblib.load(label_cache_path)
click.echo(DONE_STR)
else:
click.echo("Loading dataset... ", nl=False)
text_data, label_data = load_data(dataset)
click.echo(DONE_STR)
click.echo("Tokenizing data... ")
token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True)
serialize(token_data, token_cache_path, show_progress=True)
joblib.dump(label_data, label_cache_path, compress=3)
del text_data
gc.collect()
click.echo("Size of vocabulary: ", nl=False)
vocab = token_data.explode().value_counts()
click.secho(str(len(vocab)), fg="blue")
click.echo("Loading model... ", nl=False)
model = joblib.load(model_path)
click.echo(DONE_STR)
if cv == 1:
click.echo("Evaluating model... ", nl=False)
acc = model.score(token_data, label_data)
click.secho(f"{acc:.2%}", fg="blue")
return
click.echo("Evaluating model... ")
acc_mean, acc_std = evaluate_model(
model,
token_data,
label_data,
folds=cv,
n_jobs=eval_jobs,
)
click.secho(f"{acc_mean:.2%} ± {acc_std:.2%}", fg="blue")
@cli.command()
@click.option(
"--dataset",
required=True,
help="Dataset to train the model on",
type=click.Choice(["sentiment140", "amazonreviews", "imdb50k"]),
)
@click.option(
"--vectorizer",
default="tfidf",
help="Vectorizer to use",
type=click.Choice(["tfidf", "count", "hashing"]),
)
@click.option(
"--max-features",
default=20000,
help="Maximum number of features (should be greater than 2^15 when using hashing vectorizer)",
show_default=True,
type=click.IntRange(1, None),
)
@click.option(
"--min-df",
default=5,
help="Minimum document frequency for the features (ignored for hashing)",
show_default=True,
)
@click.option(
"--cv",
default=5,
help="Number of cross-validation folds",
show_default=True,
type=click.IntRange(1, 50),
)
@click.option(
"--token-batch-size",
default=512,
help="Size of the batches used in tokenization",
show_default=True,
)
@click.option(
"--token-jobs",
default=4,
help="Number of parallel jobs to run for tokenization",
show_default=True,
)
@click.option(
"--train-jobs",
default=1,
help="Number of parallel jobs to run for training",
show_default=True,
)
@click.option(
"--seed",
default=42,
help="Random seed (-1 for random seed)",
show_default=True,
type=click.IntRange(-1, None),
)
@click.option(
"--overwrite",
is_flag=True,
help="Overwrite the model file if it already exists",
)
@click.option(
"--force-cache",
is_flag=True,
help="Always use the cached tokenized data (if available)",
)
def train(
dataset: Literal["sentiment140", "amazonreviews", "imdb50k"],
vectorizer: Literal["tfidf", "count", "hashing"],
max_features: int,
min_df: int,
cv: int,
token_batch_size: int,
token_jobs: int,
train_jobs: int,
seed: int,
overwrite: bool,
force_cache: bool,
) -> None:
"""Train the model on the provided dataset"""
import gc
import joblib
import pandas as pd
from app.constants import MODEL_DIR, TOKENIZER_CACHE_DIR
from app.data import load_data, tokenize
from app.model import train_model
from app.utils import deserialize, serialize
model_path = MODEL_DIR / f"{dataset}_{vectorizer}_ft{max_features}.pkl"
if model_path.exists() and not overwrite:
click.confirm(f"Model file '{model_path}' already exists. Overwrite?", abort=True)
token_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_tokenized.pkl"
label_cache_path = TOKENIZER_CACHE_DIR / f"{dataset}_labels.pkl"
use_cached_data = False
if token_cache_path.exists():
use_cached_data = force_cache or click.confirm(
f"Found existing tokenized data for '{dataset}'. Use it?",
default=True,
)
if use_cached_data:
click.echo("Loading cached data... ", nl=False)
token_data = pd.Series(deserialize(token_cache_path))
label_data = joblib.load(label_cache_path)
click.echo(DONE_STR)
else:
click.echo("Loading dataset... ", nl=False)
text_data, label_data = load_data(dataset)
click.echo(DONE_STR)
click.echo("Tokenizing data... ")
token_data = tokenize(text_data, batch_size=token_batch_size, n_jobs=token_jobs, show_progress=True)
serialize(token_data, token_cache_path, show_progress=True)
joblib.dump(label_data, label_cache_path, compress=3)
del text_data
gc.collect()
click.echo("Size of vocabulary: ", nl=False)
vocab = token_data.explode().value_counts()
click.secho(str(len(vocab)), fg="blue")
click.echo("Training model... ")
model, accuracy = train_model(
token_data,
label_data,
vectorizer=vectorizer,
max_features=max_features,
min_df=min_df,
folds=cv,
n_jobs=train_jobs,
seed=seed,
)
click.echo("Model accuracy: ", nl=False)
click.secho(f"{accuracy:.2%}", fg="blue")
click.echo("Model saved to: ", nl=False)
joblib.dump(model, model_path, compress=3)
click.secho(str(model_path), fg="blue")
def cli_wrapper() -> None:
cli(max_content_width=120)
if __name__ == "__main__":
cli_wrapper()
|