Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
sys.path.append("./") | |
import gradio as gr | |
import spaces | |
import torch | |
from ip_adapter.utils import BLOCKS as BLOCKS | |
import numpy as np | |
import random | |
from diffusers import ( | |
AutoencoderKL, | |
StableDiffusionXLPipeline, | |
) | |
from ip_adapter import StyleStudio_Adapter | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
import os | |
os.system("git lfs install") | |
os.system("git clone https://huggingface.co/h94/IP-Adapter") | |
os.system("mv IP-Adapter/sdxl_models sdxl_models") | |
from huggingface_hub import hf_hub_download | |
# hf_hub_download(repo_id="h94/IP-Adapter", filename="sdxl_models/image_encoder", local_dir="./sdxl_models/image_encoder") | |
hf_hub_download(repo_id="InstantX/CSGO", filename="csgo_4_32.bin", local_dir="./CSGO/") | |
os.system('rm -rf IP-Adapter/models') | |
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
image_encoder_path = "sdxl_models/image_encoder" | |
csgo_ckpt ='./CSGO/csgo_4_32.bin' | |
pretrained_vae_name_or_path ='madebyollin/sdxl-vae-fp16-fix' | |
weight_dtype = torch.float16 | |
vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
add_watermarker=False, | |
vae=vae | |
) | |
pipe.enable_vae_tiling() | |
target_style_blocks = BLOCKS['style'] | |
csgo = StyleStudio_Adapter( | |
pipe, image_encoder_path, csgo_ckpt, device, num_style_tokens=32, | |
target_style_blocks=target_style_blocks, | |
controlnet_adapter=False, | |
style_model_resampler=True, | |
fuSAttn=True, | |
end_fusion=20, | |
adainIP=True, | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
def get_example(): | |
case = [ | |
[ | |
'./assets/style1.jpg', | |
"A red apple", | |
7.0, | |
42, | |
10, | |
], | |
[ | |
'./assets/style2.jpg', | |
"A black car", | |
7.0, | |
42, | |
10, | |
], | |
[ | |
'./assets/style3.jpg', | |
"A orange bus", | |
7.0, | |
42, | |
10, | |
], | |
] | |
return case | |
def run_for_examples(style_image_pil, prompt, guidance_scale, seed, end_fusion): | |
return create_image( | |
style_image_pil=style_image_pil, | |
prompt=prompt, | |
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
seed=seed, | |
end_fusion=end_fusion, | |
use_SAttn=True, | |
crossModalAdaIN=True, | |
) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def create_image(style_image_pil, | |
prompt, | |
neg_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", | |
guidance_scale=7, | |
num_inference_steps=50, | |
end_fusion=20, | |
crossModalAdaIN=True, | |
use_SAttn=True, | |
seed=42, | |
): | |
style_image = style_image_pil | |
print(seed) | |
generator = torch.Generator(device).manual_seed(seed) | |
init_latents = torch.randn((1, 4, 128, 128), generator=generator, device="cuda", dtype=torch.float16) | |
num_sample=1 | |
if use_SAttn: | |
num_sample=2 | |
init_latents = init_latents.repeat(num_sample, 1, 1, 1) | |
with torch.no_grad(): | |
images = csgo.generate(pil_style_image=style_image, | |
prompt=prompt, | |
negative_prompt=neg_prompt, | |
height=1024, | |
width=1024, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
num_samples=num_sample, | |
num_inference_steps=num_inference_steps, | |
end_fusion=end_fusion, | |
cross_modal_adain=crossModalAdaIN, | |
use_SAttn=use_SAttn, | |
generator=generator, | |
latents=init_latents, | |
) | |
if use_SAttn: | |
return [images[1]] | |
else: | |
return [images[0]] | |
# Description | |
title = r""" | |
<h1 align="center">StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</h1> | |
""" | |
description = r""" | |
<b>Official π€ Gradio demo</b> for <a href='https://github.com/Westlake-AGI-Lab/StyleStudio' target='_blank'><b>StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements</b></a>.<br> | |
How to use:<br> | |
1. Upload a style image. | |
2. <b>Enter your desired prompt</b>. | |
3. Click the <b>Submit</b> button to begin customization. | |
4. Share your stylized photo with your friends and enjoy! π | |
Advanced usage:<br> | |
1. Click advanced options. | |
2. Choose different guidance and steps. | |
3. Set the timing for the Teacher Model's participation. | |
4. Feel free to discontinue using the Cross-Modal AdaIN and the Teacher Model for result comparison. | |
""" | |
article = r""" | |
--- | |
π **Tips** | |
<br> | |
1. As the value of end_fusion <b>increases</b>, the style gradually diminishes. | |
Therefore, it is suggested to set end_fusion to be between <b>1/5 and 1/3</b> of the number of inference steps (num inference steps). | |
2. If you want to experience style-based CFG, see the details on the <a href="https://github.com/Westlake-AGI-Lab/StyleStudio">GitHub repo</a>. | |
--- | |
π **Citation** | |
<br> | |
If our work is helpful for your research or applications, please cite us via: | |
```bibtex | |
``` | |
π§ **Contact** | |
<br> | |
If you have any questions, please feel free to open an issue or directly reach us out at <b>leimingkun@westlake.edu.cn</b>. | |
""" | |
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False) | |
with block: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
style_image_pil = gr.Image(label="Style Image", type='pil') | |
prompt = gr.Textbox(label="Prompt", | |
value="A red apple") | |
neg_prompt = gr.Textbox(label="Negative Prompt", | |
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry") | |
with gr.Accordion(open=True, label="Advanced Options"): | |
guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale") | |
num_inference_steps = gr.Slider(minimum=5, maximum=200.0, step=1.0, value=50, | |
label="num inference steps") | |
end_fusion = gr.Slider(minimum=0, maximum=200, step=1.0, value=20.0, label="end fusion") | |
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=42, step=1, label="Seed Value") | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
crossModalAdaIN = gr.Checkbox(label="Cross Modal AdaIN", value=True) | |
use_SAttn = gr.Checkbox(label="Teacher Model", value=True) | |
generate_button = gr.Button("Generate Image") | |
with gr.Column(): | |
generated_image = gr.Gallery(label="Generated Image") | |
generate_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=create_image, | |
inputs=[ | |
style_image_pil, | |
prompt, | |
neg_prompt, | |
guidance_scale, | |
num_inference_steps, | |
end_fusion, | |
crossModalAdaIN, | |
use_SAttn, | |
seed,], | |
outputs=[generated_image]) | |
gr.Examples( | |
examples=get_example(), | |
inputs=[style_image_pil, prompt, guidance_scale, seed, end_fusion], | |
fn=run_for_examples, | |
outputs=[generated_image], | |
cache_examples=False, | |
) | |
gr.Markdown(article) | |
block.launch() | |