File size: 5,077 Bytes
b9029bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe3452
b9029bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7140d5d
c2cb492
b9029bc
 
 
 
 
 
 
 
dfe3452
b9029bc
 
 
 
 
 
 
 
feba69f
 
b9029bc
c2cb492
b9029bc
c2cb492
b9029bc
feba69f
b9029bc
5824344
b9029bc
c2cb492
 
 
58603e6
c2cb492
 
b9029bc
 
 
 
 
c2cb492
b9029bc
 
 
 
a67f8c1
 
 
 
 
 
 
 
 
 
 
 
 
 
b9029bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import yaml
import torch
import argparse
import numpy as np
import gradio as gr

from PIL import Image
from copy import deepcopy
from torch.nn.parallel import DataParallel, DistributedDataParallel

from huggingface_hub import hf_hub_download
from gradio_imageslider import ImageSlider

## local code
from models.smfanet_arch import  SMFANet


def dict2namespace(config):
    namespace = argparse.Namespace()
    for key, value in config.items():
        if isinstance(value, dict):
            new_value = dict2namespace(value)
        else:
            new_value = value
        setattr(namespace, key, new_value)
    return namespace

def load_img (filename, norm=True,):
    img = np.array(Image.open(filename).convert("RGB"))
    h, w = img.shape[:2]
    
    if w > 1920 or h > 1080:
        new_h, new_w = h // 4, w // 4
        img = np.array(Image.fromarray(img).resize((new_w, new_h), Image.BICUBIC))
 
    if norm:
        img = img / 255.
        img = img.astype(np.float32)
    return img

def process_img (image):
    img = np.array(image)
    img = img / 255.
    img = img.astype(np.float32)
    y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
    
    with torch.no_grad():
        x_hat = model(y)

    restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
    restored_img = np.clip(restored_img, 0. , 1.)

    restored_img = (restored_img * 255.0).round().astype(np.uint8)  # float32 to uint8
    #return Image.fromarray(restored_img) #
    return (image, Image.fromarray(restored_img))

def load_network(net, load_path, strict=True, param_key='params'):
    if isinstance(net, (DataParallel, DistributedDataParallel)):
        net = net.module
    load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
    if param_key is not None:
        if param_key not in load_net and 'params' in load_net:
            param_key = 'params'
        load_net = load_net[param_key]
    # remove unnecessary 'module.'
    for k, v in deepcopy(load_net).items():
        if k.startswith('module.'):
            load_net[k[7:]] = v
            load_net.pop(k)
    net.load_state_dict(load_net, strict=strict)

CONFIG = "configs/SMFANet_plus_x4SR.yml"
MODEL_NAME = "pth/SMFANet_plus_DF2K_100w_x4SR.pth"

# parse config file
with open(os.path.join(CONFIG), "r") as f:
    config = yaml.safe_load(f)

cfg = dict2namespace(config)

device = torch.device("cpu")
model = SMFANet(dim=cfg.model.dim, n_blocks=cfg.model.n_blocks, ffn_scale=cfg.model.ffn_scale, upscaling_factor=cfg.model.upscaling_factor)

model = model.to(device)
print ("IMAGE MODEL CKPT:", MODEL_NAME)
load_network(model, MODEL_NAME, strict=True, param_key='params')




title = "[ECCV 2024] SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution"
description = '''  

#### [Mingjun Zheng](https://github.com/Zheng-MJ), [Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), and [Jinshan Pan](https://jspan.github.io/)

#### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology

####  Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.

<br>
<code>
@inproceedings{smfanet,
    title={SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution},
    author={Zheng, Mingjun and Sun, Long and Dong, Jiangxin and Pan, Jinshan},
    booktitle={ECCV},
    year={2024}
 }
</code>
<br>
'''


article = "<p style='text-align: center'><a href='https://raw.githubusercontent.com/Zheng-MJ/SMFANet' target='_blank'>SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution </a></p>"

#### Image,Prompts examples
examples = [
            ['images/0801x4.png'],
            ['images/0840x4.png'],
            ['images/0841x4.png'],
            ['images/0870x4.png'],
            ['images/0878x4.png'],
            ['images/0884x4.png'],
            ['images/0900x4.png'],
            ['images/img002x4.png'],
            ['images/img003x4.png'],
            ['images/img004x4.png'],
            ['images/img035x4.png'],
            ['images/img053x4.png'],
            ['images/img064x4.png'],
            ['images/img083x4.png'],
            ['images/img092x4.png'],
            ]

css = """
    .image-frame img, .image-container img {
        width: auto;
        height: auto;
        max-width: none;
    }
"""

demo = gr.Interface(
    fn=process_img,
    inputs=[gr.Image(type="pil", label="Input", value="images/0878x4.png"),],
    outputs=ImageSlider(label="Super-Resolved Image", 
                        type="pil",
                        show_download_button=True,
                        ), #[gr.Image(type="pil", label="Ouput", min_width=500)],
    title=title,
    description=description,
    article=article,
    examples=examples,
    css=css,
)

if __name__ == "__main__":
    demo.launch()