Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from diffusers import CogVideoXDDIMScheduler | |
from .nn import TimeEmbeddings, TextEmbeddings, VisualEmbeddings, RoPE3D, Modulation, MultiheadSelfAttention, MultiheadSelfAttentionTP, FeedForward, OutLayer | |
from .utils import exist | |
from torch.distributed.tensor.parallel import ( | |
ColwiseParallel, | |
PrepareModuleInput, | |
PrepareModuleOutput, | |
RowwiseParallel, | |
SequenceParallel, | |
parallelize_module, | |
) | |
from torch.distributed._tensor import Replicate, Shard | |
def parallelize(model, tp_mesh): | |
if tp_mesh.size() > 1: | |
plan = { | |
"in_layer":ColwiseParallel(), | |
"out_layer": RowwiseParallel( | |
output_layouts=Replicate(), | |
) | |
} | |
parallelize_module(model.time_embeddings, tp_mesh, plan) | |
plan = { | |
"in_layer": ColwiseParallel(output_layouts=Replicate(),) | |
} | |
parallelize_module(model.text_embeddings, tp_mesh, plan) | |
parallelize_module(model.visual_embeddings, tp_mesh, plan) | |
for i, doubled_transformer_block in enumerate(model.transformer_blocks): | |
for j, transformer_block in enumerate(doubled_transformer_block): | |
transformer_block.self_attention = MultiheadSelfAttentionTP(transformer_block.self_attention) | |
plan = { | |
#text modulation | |
"text_modulation": PrepareModuleInput( | |
input_layouts=(None, None), | |
desired_input_layouts=(Replicate(), None), | |
), | |
"text_modulation.out_layer": ColwiseParallel(output_layouts=Replicate(),), | |
#visual modulation | |
"visual_modulation": PrepareModuleInput( | |
input_layouts=(None, None), | |
desired_input_layouts=(Replicate(), None), | |
), | |
"visual_modulation.out_layer": ColwiseParallel(output_layouts=Replicate(), use_local_output=True), | |
#self_attention_norm | |
"self_attention_norm": SequenceParallel(sequence_dim=0, use_local_output=True), # TODO надо ли вообще это??? если у нас смешанный ввод нескольких видосом может быть | |
#self_attention | |
"self_attention.to_query": ColwiseParallel( | |
input_layouts=Replicate(), | |
), | |
"self_attention.to_key": ColwiseParallel( | |
input_layouts=Replicate(), | |
), | |
"self_attention.to_value": ColwiseParallel( | |
input_layouts=Replicate(), | |
), | |
"self_attention.query_norm": SequenceParallel(sequence_dim=0, use_local_output=True), | |
"self_attention.key_norm": SequenceParallel(sequence_dim=0, use_local_output=True), | |
"self_attention.output_layer": RowwiseParallel( | |
# input_layouts=(Shard(0), ), | |
output_layouts=Replicate(), | |
), | |
#feed_forward_norm | |
"feed_forward_norm": SequenceParallel(sequence_dim=0, use_local_output=True), | |
#feed_forward | |
"feed_forward.in_layer": ColwiseParallel(), | |
"feed_forward.out_layer": RowwiseParallel(), | |
} | |
self_attn = transformer_block.self_attention | |
self_attn.num_heads = self_attn.num_heads // tp_mesh.size() | |
parallelize_module(transformer_block, tp_mesh, plan) | |
plan = { | |
"modulation_out":ColwiseParallel(output_layouts=Replicate(),), | |
"out_layer": ColwiseParallel(output_layouts=Replicate(),), | |
} | |
parallelize_module(model.out_layer, tp_mesh, plan) | |
plan={ | |
"time_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),), | |
"text_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),), | |
"visual_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),), | |
"out_layer": PrepareModuleInput( | |
input_layouts=(None, None, None, None), | |
desired_input_layouts=(Replicate(), Replicate(), Replicate(), None)), | |
} | |
parallelize_module(model, tp_mesh, {}) | |
return model | |
class TransformerBlock(nn.Module): | |
def __init__(self, model_dim, time_dim, ff_dim, head_dim=64): | |
super().__init__() | |
self.visual_modulation = Modulation(time_dim, model_dim) | |
self.text_modulation = Modulation(time_dim, model_dim) | |
self.self_attention_norm = nn.LayerNorm(model_dim, elementwise_affine=True) | |
self.self_attention = MultiheadSelfAttention(model_dim, head_dim) | |
self.feed_forward_norm = nn.LayerNorm(model_dim, elementwise_affine=True) | |
self.feed_forward = FeedForward(model_dim, ff_dim) | |
def forward(self, visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type): | |
visual_shape = visual_embed.shape[:-1] | |
visual_self_attn_params, visual_ff_params = self.visual_modulation(time_embed, visual_cu_seqlens) | |
text_self_attn_params, text_ff_params = self.text_modulation(time_embed, text_cu_seqlens) | |
visual_shift, visual_scale, visual_gate = torch.chunk(visual_self_attn_params, 3, dim=-1) | |
text_shift, text_scale, text_gate = torch.chunk(text_self_attn_params, 3, dim=-1) | |
visual_out = self.self_attention_norm(visual_embed) * (visual_scale[:, None, None] + 1.) + visual_shift[:, None, None] | |
text_out = self.self_attention_norm(text_embed) * (text_scale + 1.) + text_shift | |
visual_out, text_out = self.self_attention(visual_out, text_out, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type) | |
visual_embed = visual_embed + visual_gate[:, None, None] * visual_out | |
text_embed = text_embed + text_gate * text_out | |
visual_shift, visual_scale, visual_gate = torch.chunk(visual_ff_params, 3, dim=-1) | |
visual_out = self.feed_forward_norm(visual_embed) * (visual_scale[:, None, None] + 1.) + visual_shift[:, None, None] | |
visual_embed = visual_embed + visual_gate[:, None, None] * self.feed_forward(visual_out) | |
text_shift, text_scale, text_gate = torch.chunk(text_ff_params, 3, dim=-1) | |
text_out = self.feed_forward_norm(text_embed) * (text_scale + 1.) + text_shift | |
text_embed = text_embed + text_gate * self.feed_forward(text_out) | |
return visual_embed, text_embed | |
class DiffusionTransformer3D(nn.Module): | |
def __init__( | |
self, | |
in_visual_dim=4, | |
in_text_dim=2048, | |
time_dim=512, | |
out_visual_dim=4, | |
patch_size=(1, 2, 2), | |
model_dim=2048, | |
ff_dim=5120, | |
num_blocks=8, | |
axes_dims=(16, 24, 24), | |
): | |
super().__init__() | |
head_dim = sum(axes_dims) | |
self.in_visual_dim = in_visual_dim | |
self.model_dim = model_dim | |
self.num_blocks = num_blocks | |
self.time_embeddings = TimeEmbeddings(model_dim, time_dim) | |
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim) | |
self.visual_embeddings = VisualEmbeddings(in_visual_dim, model_dim, patch_size) | |
self.rope_embeddings = RoPE3D(axes_dims) | |
self.transformer_blocks = nn.ModuleList([ | |
nn.ModuleList([ | |
TransformerBlock(model_dim, time_dim, ff_dim, head_dim), | |
TransformerBlock(model_dim, time_dim, ff_dim, head_dim), | |
]) for _ in range(num_blocks) | |
]) | |
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size) | |
def forward(self, x, text_embed, time, visual_cu_seqlens, text_cu_seqlens, num_groups=(1, 1, 1), scale_factor=(1., 1., 1.)): | |
time_embed = self.time_embeddings(time) | |
text_embed = self.text_embeddings(text_embed) | |
visual_embed = self.visual_embeddings(x) | |
rope = self.rope_embeddings(visual_embed, visual_cu_seqlens, scale_factor) | |
for i, (local_attention, global_attention) in enumerate(self.transformer_blocks): | |
visual_embed, text_embed = local_attention( | |
visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, 'local' | |
) | |
visual_embed, text_embed = global_attention( | |
visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, 'global' | |
) | |
return self.out_layer(visual_embed, text_embed, time_embed, visual_cu_seqlens) | |
def get_dit(conf): | |
dit = DiffusionTransformer3D(**conf.params) | |
state_dict = torch.load(conf.checkpoint_path, weights_only=True, map_location=torch.device('cpu')) | |
dit.load_state_dict(state_dict, strict=False) | |
return dit | |