File size: 1,548 Bytes
1fcb538
9131bec
 
1fcb538
931207e
 
ba93ad8
61a9e50
 
 
617fdc7
f81dc6c
57301c2
96f9a87
 
 
9131bec
96f9a87
 
 
432ab81
96f9a87
 
 
 
 
617fdc7
96f9a87
9131bec
 
96f9a87
 
9131bec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt

st.title('Fitting simple models with JAX')
st.header('A quadratric regression example')

st.markdown('*\"Parametrised models are simply functions that depend on inputs and trainable parameters. There is no fundamental difference between the two, except that trainable parameters are shared across training samples whereas the input varies from sample to sample.\"* [(Yann LeCun, Deep learning course)](https://atcold.github.io/pytorch-Deep-Learning/en/week02/02-1/#Parametrised-models)')

st.latex(r'''h(\boldsymbol x, \boldsymbol w)= \sum_{k=1}^{K}\boldsymbol w_{k} \phi_{k}(\boldsymbol x)''')

number_of_observations = st.sidebar.slider('Number of observations', min_value=50, max_value=150, value=50)
noise_standard_deviation = st.sidebar.slider('Standard deviation of the noise', min_value = 0.0, max_value=2.0, value=0.25)

np.random.seed(2)

X = np.column_stack((np.ones(number_of_observations), 
                     np.random.random(number_of_observations)))      

w = np.array([3.0, -20.0, 32.0])  # coefficients                                    

X = np.column_stack((X, X[:,1] ** 2))   # add x**2 column
additional_noise = 8 * np.random.binomial(1, 0.03, size = number_of_observations)
y = np.dot(X, w) + noise_standard_deviation * np.random.randn(number_of_observations) \
        + additional_noise	


fig, ax = plt.subplots(dpi=320)
ax.set_xlim((0,1))
ax.set_ylim((-5,20))
ax.scatter(X[:,1], y, c='r', edgecolors='black')

st.pyplot(fig)
st.write(X[:5, :])