Spaces:
Running
Running
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
# SPDX-License-Identifier: MIT | |
import numpy as np | |
import math | |
import functools | |
import torch | |
import torch.nn as nn | |
from torch.nn import init | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from torch.nn import Parameter as P | |
from .transformer import Transformer | |
from . import BigGAN_layers as layers | |
from .sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d | |
from util.util import to_device, load_network | |
from .networks import init_weights | |
from params import * | |
# Attention is passed in in the format '32_64' to mean applying an attention | |
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64. | |
from models.blocks import LinearBlock, Conv2dBlock, ResBlocks, ActFirstResBlock | |
class Decoder(nn.Module): | |
def __init__(self, ups=3, n_res=2, dim=512, out_dim=1, res_norm='adain', activ='relu', pad_type='reflect'): | |
super(Decoder, self).__init__() | |
self.model = [] | |
self.model += [ResBlocks(n_res, dim, res_norm, | |
activ, pad_type=pad_type)] | |
for i in range(ups): | |
self.model += [nn.Upsample(scale_factor=2), | |
Conv2dBlock(dim, dim // 2, 5, 1, 2, | |
norm='in', | |
activation=activ, | |
pad_type=pad_type)] | |
dim //= 2 | |
self.model += [Conv2dBlock(dim, out_dim, 7, 1, 3, | |
norm='none', | |
activation='tanh', | |
pad_type=pad_type)] | |
self.model = nn.Sequential(*self.model) | |
def forward(self, x): | |
y = self.model(x) | |
return y | |
def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'): | |
arch = {} | |
arch[512] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]], | |
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]], | |
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)], | |
'resolution': [8, 16, 32, 64, 128, 256, 512], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 10)}} | |
arch[256] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2]], | |
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1]], | |
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)], | |
'resolution': [8, 16, 32, 64, 128, 256], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 9)}} | |
arch[128] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]], | |
'out_channels': [ch * item for item in [16, 8, 4, 2, 1]], | |
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2)], | |
'resolution': [8, 16, 32, 64, 128], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 8)}} | |
arch[64] = {'in_channels': [ch * item for item in [16, 16, 8, 4]], | |
'out_channels': [ch * item for item in [16, 8, 4, 2]], | |
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2)], | |
'resolution': [8, 16, 32, 64], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 7)}} | |
arch[63] = {'in_channels': [ch * item for item in [16, 16, 8, 4]], | |
'out_channels': [ch * item for item in [16, 8, 4, 2]], | |
'upsample': [(2, 2), (2, 2), (2, 2), (2,1)], | |
'resolution': [8, 16, 32, 64], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 7)}, | |
'kernel1': [3, 3, 3, 3], | |
'kernel2': [3, 3, 1, 1] | |
} | |
arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]], | |
'out_channels': [ch * item for item in [4, 4, 4]], | |
'upsample': [(2, 2), (2, 2), (2, 2)], | |
'resolution': [8, 16, 32], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 6)}} | |
arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]], | |
'out_channels': [ch * item for item in [4, 4, 4]], | |
'upsample': [(2, 2), (2, 2), (2, 2)], | |
'resolution': [8, 16, 32], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 6)}, | |
'kernel1': [3, 3, 3], | |
'kernel2': [3, 3, 1] | |
} | |
arch[129] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]], | |
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]], | |
'upsample': [(2,2), (2,2), (2,2), (2,2), (2,2), (1,2), (1,2)], | |
'resolution': [8, 16, 32, 64, 128, 256, 512], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 10)}} | |
arch[33] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]], | |
'out_channels': [ch * item for item in [16, 8, 4, 2, 1]], | |
'upsample': [(2,2), (2,2), (2,2), (1,2), (1,2)], | |
'resolution': [8, 16, 32, 64, 128], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 8)}} | |
arch[31] = {'in_channels': [ch * item for item in [16, 16, 4, 2]], | |
'out_channels': [ch * item for item in [16, 4, 2, 1]], | |
'upsample': [(2,2), (2,2), (2,2), (1,2)], | |
'resolution': [8, 16, 32, 64], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 7)}, | |
'kernel1':[3, 3, 3, 3], | |
'kernel2': [3, 1, 1, 1]} | |
arch[16] = {'in_channels': [ch * item for item in [8, 4, 2]], | |
'out_channels': [ch * item for item in [4, 2, 1]], | |
'upsample': [(2,2), (2,2), (2,1)], | |
'resolution': [8, 16, 16], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 6)}, | |
'kernel1':[3, 3, 3], | |
'kernel2': [3, 3, 1]} | |
arch[17] = {'in_channels': [ch * item for item in [8, 4, 2]], | |
'out_channels': [ch * item for item in [4, 2, 1]], | |
'upsample': [(2,2), (2,2), (2,1)], | |
'resolution': [8, 16, 16], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 6)}, | |
'kernel1':[3, 3, 3], | |
'kernel2': [3, 3, 1]} | |
arch[20] = {'in_channels': [ch * item for item in [8, 4, 2]], | |
'out_channels': [ch * item for item in [4, 2, 1]], | |
'upsample': [(2,2), (2,2), (2,1)], | |
'resolution': [8, 16, 16], | |
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) | |
for i in range(3, 6)}, | |
'kernel1':[3, 3, 3], | |
'kernel2': [3, 1, 1]} | |
return arch | |
class Generator(nn.Module): | |
def __init__(self, G_ch=64, dim_z=128, bottom_width=4, bottom_height=4,resolution=128, | |
G_kernel_size=3, G_attn='64', n_classes=1000, | |
num_G_SVs=1, num_G_SV_itrs=1, | |
G_shared=True, shared_dim=0, no_hier=False, | |
cross_replica=False, mybn=False, | |
G_activation=nn.ReLU(inplace=False), | |
BN_eps=1e-5, SN_eps=1e-12, G_fp16=False, | |
G_init='ortho', skip_init=False, | |
G_param='SN', norm_style='bn',gpu_ids=[], bn_linear='embed', input_nc=3, | |
one_hot=False, first_layer=False, one_hot_k=1, | |
**kwargs): | |
super(Generator, self).__init__() | |
self.name = 'G' | |
# Use class only in first layer | |
self.first_layer = first_layer | |
# gpu-ids | |
self.gpu_ids = gpu_ids | |
# Use one hot vector representation for input class | |
self.one_hot = one_hot | |
# Use one hot k vector representation for input class if k is larger than 0. If it's 0, simly use the class number and not a k-hot encoding. | |
self.one_hot_k = one_hot_k | |
# Channel width mulitplier | |
self.ch = G_ch | |
# Dimensionality of the latent space | |
self.dim_z = dim_z | |
# The initial width dimensions | |
self.bottom_width = bottom_width | |
# The initial height dimension | |
self.bottom_height = bottom_height | |
# Resolution of the output | |
self.resolution = resolution | |
# Kernel size? | |
self.kernel_size = G_kernel_size | |
# Attention? | |
self.attention = G_attn | |
# number of classes, for use in categorical conditional generation | |
self.n_classes = n_classes | |
# Use shared embeddings? | |
self.G_shared = G_shared | |
# Dimensionality of the shared embedding? Unused if not using G_shared | |
self.shared_dim = shared_dim if shared_dim > 0 else dim_z | |
# Hierarchical latent space? | |
self.hier = not no_hier | |
# Cross replica batchnorm? | |
self.cross_replica = cross_replica | |
# Use my batchnorm? | |
self.mybn = mybn | |
# nonlinearity for residual blocks | |
self.activation = G_activation | |
# Initialization style | |
self.init = G_init | |
# Parameterization style | |
self.G_param = G_param | |
# Normalization style | |
self.norm_style = norm_style | |
# Epsilon for BatchNorm? | |
self.BN_eps = BN_eps | |
# Epsilon for Spectral Norm? | |
self.SN_eps = SN_eps | |
# fp16? | |
self.fp16 = G_fp16 | |
# Architecture dict | |
self.arch = G_arch(self.ch, self.attention)[resolution] | |
self.bn_linear = bn_linear | |
#self.transformer = Transformer(d_model = 2560) | |
#self.input_proj = nn.Conv2d(512, 2560, kernel_size=1) | |
self.linear_q = nn.Linear(512,2048*2) | |
self.DETR = build() | |
self.DEC = Decoder(res_norm = 'in') | |
# If using hierarchical latents, adjust z | |
if self.hier: | |
# Number of places z slots into | |
self.num_slots = len(self.arch['in_channels']) + 1 | |
self.z_chunk_size = (self.dim_z // self.num_slots) | |
# Recalculate latent dimensionality for even splitting into chunks | |
self.dim_z = self.z_chunk_size * self.num_slots | |
else: | |
self.num_slots = 1 | |
self.z_chunk_size = 0 | |
# Which convs, batchnorms, and linear layers to use | |
if self.G_param == 'SN': | |
self.which_conv = functools.partial(layers.SNConv2d, | |
kernel_size=3, padding=1, | |
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, | |
eps=self.SN_eps) | |
self.which_linear = functools.partial(layers.SNLinear, | |
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, | |
eps=self.SN_eps) | |
else: | |
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1) | |
self.which_linear = nn.Linear | |
# We use a non-spectral-normed embedding here regardless; | |
# For some reason applying SN to G's embedding seems to randomly cripple G | |
if one_hot: | |
self.which_embedding = functools.partial(layers.SNLinear, | |
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, | |
eps=self.SN_eps) | |
else: | |
self.which_embedding = nn.Embedding | |
bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared | |
else self.which_embedding) | |
if self.bn_linear=='SN': | |
bn_linear = functools.partial(self.which_linear, bias=False) | |
if self.G_shared: | |
input_size = self.shared_dim + self.z_chunk_size | |
elif self.hier: | |
if self.first_layer: | |
input_size = self.z_chunk_size | |
else: | |
input_size = self.n_classes + self.z_chunk_size | |
self.which_bn = functools.partial(layers.ccbn, | |
which_linear=bn_linear, | |
cross_replica=self.cross_replica, | |
mybn=self.mybn, | |
input_size=input_size, | |
norm_style=self.norm_style, | |
eps=self.BN_eps) | |
else: | |
input_size = self.n_classes | |
self.which_bn = functools.partial(layers.bn, | |
cross_replica=self.cross_replica, | |
mybn=self.mybn, | |
eps=self.BN_eps) | |
# Prepare model | |
# If not using shared embeddings, self.shared is just a passthrough | |
self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared | |
else layers.identity()) | |
# First linear layer | |
# The parameters for the first linear layer depend on the different input variations. | |
if self.first_layer: | |
if self.one_hot: | |
self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes, | |
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height)) | |
else: | |
self.linear = self.which_linear(self.dim_z // self.num_slots + 1, | |
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height)) | |
if self.one_hot_k==1: | |
self.linear = self.which_linear((self.dim_z // self.num_slots) * self.n_classes, | |
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height)) | |
if self.one_hot_k>1: | |
self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes*self.one_hot_k, | |
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height)) | |
else: | |
self.linear = self.which_linear(self.dim_z // self.num_slots, | |
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height)) | |
# self.blocks is a doubly-nested list of modules, the outer loop intended | |
# to be over blocks at a given resolution (resblocks and/or self-attention) | |
# while the inner loop is over a given block | |
self.blocks = [] | |
for index in range(len(self.arch['out_channels'])): | |
if 'kernel1' in self.arch.keys(): | |
padd1 = 1 if self.arch['kernel1'][index]>1 else 0 | |
padd2 = 1 if self.arch['kernel2'][index]>1 else 0 | |
conv1 = functools.partial(layers.SNConv2d, | |
kernel_size=self.arch['kernel1'][index], padding=padd1, | |
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, | |
eps=self.SN_eps) | |
conv2 = functools.partial(layers.SNConv2d, | |
kernel_size=self.arch['kernel2'][index], padding=padd2, | |
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, | |
eps=self.SN_eps) | |
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index], | |
out_channels=self.arch['out_channels'][index], | |
which_conv1=conv1, | |
which_conv2=conv2, | |
which_bn=self.which_bn, | |
activation=self.activation, | |
upsample=(functools.partial(F.interpolate, | |
scale_factor=self.arch['upsample'][index]) | |
if index < len(self.arch['upsample']) else None))]] | |
else: | |
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index], | |
out_channels=self.arch['out_channels'][index], | |
which_conv1=self.which_conv, | |
which_conv2=self.which_conv, | |
which_bn=self.which_bn, | |
activation=self.activation, | |
upsample=(functools.partial(F.interpolate, scale_factor=self.arch['upsample'][index]) | |
if index < len(self.arch['upsample']) else None))]] | |
# If attention on this block, attach it to the end | |
if self.arch['attention'][self.arch['resolution'][index]]: | |
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index]) | |
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)] | |
# Turn self.blocks into a ModuleList so that it's all properly registered. | |
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) | |
# output layer: batchnorm-relu-conv. | |
# Consider using a non-spectral conv here | |
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1], | |
cross_replica=self.cross_replica, | |
mybn=self.mybn), | |
self.activation, | |
self.which_conv(self.arch['out_channels'][-1], input_nc)) | |
# Initialize weights. Optionally skip init for testing. | |
if not skip_init: | |
self = init_weights(self, G_init) | |
# Note on this forward function: we pass in a y vector which has | |
# already been passed through G.shared to enable easy class-wise | |
# interpolation later. If we passed in the one-hot and then ran it through | |
# G.shared in this forward function, it would be harder to handle. | |
def forward(self, x, y_ind, y): | |
# If hierarchical, concatenate zs and ys | |
h_all = self.DETR(x, y_ind) | |
#h_all = torch.stack([h_all, h_all, h_all]) | |
#h_all_bs = torch.unbind(h_all[-1], 0) | |
#y_bs = torch.unbind(y_ind, 0) | |
#h = torch.stack([h_i[y_j] for h_i,y_j in zip(h_all_bs, y_bs)], 0) | |
h = self.linear_q(h_all) | |
h = h.contiguous() | |
# Reshape - when y is not a single class value but rather an array of classes, the reshape is needed to create | |
# a separate vertical patch for each input. | |
if self.first_layer: | |
# correct reshape | |
h = h.view(h.size(0), h.shape[1]*2, 4, -1) | |
h = h.permute(0, 3, 2, 1) | |
else: | |
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_height) | |
#for index, blocklist in enumerate(self.blocks): | |
# Second inner loop in case block has multiple layers | |
# for block in blocklist: | |
# h = block(h, ys[index]) | |
#Apply batchnorm-relu-conv-tanh at output | |
# h = torch.tanh(self.output_layer(h)) | |
h = self.DEC(h) | |
return h | |
# Discriminator architecture, same paradigm as G's above | |
def D_arch(ch=64, attention='64', input_nc=3, ksize='333333', dilation='111111'): | |
arch = {} | |
arch[256] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]], | |
'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]], | |
'downsample': [True] * 6 + [False], | |
'resolution': [128, 64, 32, 16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 8)}} | |
arch[128] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]], | |
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]], | |
'downsample': [True] * 5 + [False], | |
'resolution': [64, 32, 16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 8)}} | |
arch[64] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]], | |
'out_channels': [item * ch for item in [1, 2, 4, 8, 16]], | |
'downsample': [True] * 4 + [False], | |
'resolution': [32, 16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 7)}} | |
arch[63] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]], | |
'out_channels': [item * ch for item in [1, 2, 4, 8, 16]], | |
'downsample': [True] * 4 + [False], | |
'resolution': [32, 16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 7)}} | |
arch[32] = {'in_channels': [input_nc] + [item * ch for item in [4, 4, 4]], | |
'out_channels': [item * ch for item in [4, 4, 4, 4]], | |
'downsample': [True, True, False, False], | |
'resolution': [16, 16, 16, 16], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 6)}} | |
arch[129] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]], | |
'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]], | |
'downsample': [True] * 6 + [False], | |
'resolution': [128, 64, 32, 16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 8)}} | |
arch[33] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]], | |
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]], | |
'downsample': [True] * 5 + [False], | |
'resolution': [64, 32, 16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 10)}} | |
arch[31] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]], | |
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]], | |
'downsample': [True] * 5 + [False], | |
'resolution': [64, 32, 16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 10)}} | |
arch[16] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]], | |
'out_channels': [item * ch for item in [1, 8, 16, 16]], | |
'downsample': [True] * 3 + [False], | |
'resolution': [16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 5)}} | |
arch[17] = {'in_channels': [input_nc] + [ch * item for item in [1, 4]], | |
'out_channels': [item * ch for item in [1, 4, 8]], | |
'downsample': [True] * 3, | |
'resolution': [16, 8, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 5)}} | |
arch[20] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]], | |
'out_channels': [item * ch for item in [1, 8, 16, 16]], | |
'downsample': [True] * 3 + [False], | |
'resolution': [16, 8, 4, 4], | |
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] | |
for i in range(2, 5)}} | |
return arch | |
class Discriminator(nn.Module): | |
def __init__(self, D_ch=64, D_wide=True, resolution=resolution, | |
D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE, | |
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False), | |
SN_eps=1e-8, output_dim=1, D_mixed_precision=False, D_fp16=False, | |
D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs): | |
super(Discriminator, self).__init__() | |
self.name = 'D' | |
# gpu_ids | |
self.gpu_ids = gpu_ids | |
# one_hot representation | |
self.one_hot = one_hot | |
# Width multiplier | |
self.ch = D_ch | |
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN? | |
self.D_wide = D_wide | |
# Resolution | |
self.resolution = resolution | |
# Kernel size | |
self.kernel_size = D_kernel_size | |
# Attention? | |
self.attention = D_attn | |
# Number of classes | |
self.n_classes = n_classes | |
# Activation | |
self.activation = D_activation | |
# Initialization style | |
self.init = D_init | |
# Parameterization style | |
self.D_param = D_param | |
# Epsilon for Spectral Norm? | |
self.SN_eps = SN_eps | |
# Fp16? | |
self.fp16 = D_fp16 | |
# Architecture | |
self.arch = D_arch(self.ch, self.attention, input_nc)[resolution] | |
# Which convs, batchnorms, and linear layers to use | |
# No option to turn off SN in D right now | |
if self.D_param == 'SN': | |
self.which_conv = functools.partial(layers.SNConv2d, | |
kernel_size=3, padding=1, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
self.which_linear = functools.partial(layers.SNLinear, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
self.which_embedding = functools.partial(layers.SNEmbedding, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
if bn_linear=='SN': | |
self.which_embedding = functools.partial(layers.SNLinear, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
else: | |
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1) | |
self.which_linear = nn.Linear | |
# We use a non-spectral-normed embedding here regardless; | |
# For some reason applying SN to G's embedding seems to randomly cripple G | |
self.which_embedding = nn.Embedding | |
if one_hot: | |
self.which_embedding = functools.partial(layers.SNLinear, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
# Prepare model | |
# self.blocks is a doubly-nested list of modules, the outer loop intended | |
# to be over blocks at a given resolution (resblocks and/or self-attention) | |
self.blocks = [] | |
for index in range(len(self.arch['out_channels'])): | |
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index], | |
out_channels=self.arch['out_channels'][index], | |
which_conv=self.which_conv, | |
wide=self.D_wide, | |
activation=self.activation, | |
preactivation=(index > 0), | |
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]] | |
# If attention on this block, attach it to the end | |
if self.arch['attention'][self.arch['resolution'][index]]: | |
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index]) | |
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], | |
self.which_conv)] | |
# Turn self.blocks into a ModuleList so that it's all properly registered. | |
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) | |
# Linear output layer. The output dimension is typically 1, but may be | |
# larger if we're e.g. turning this into a VAE with an inference output | |
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim) | |
# Embedding for projection discrimination | |
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1]) | |
# Initialize weights | |
if not skip_init: | |
self = init_weights(self, D_init) | |
def forward(self, x, y=None, **kwargs): | |
# Stick x into h for cleaner for loops without flow control | |
h = x | |
# Loop over blocks | |
for index, blocklist in enumerate(self.blocks): | |
for block in blocklist: | |
h = block(h) | |
# Apply global sum pooling as in SN-GAN | |
h = torch.sum(self.activation(h), [2, 3]) | |
# Get initial class-unconditional output | |
out = self.linear(h) | |
# Get projection of final featureset onto class vectors and add to evidence | |
if y is not None: | |
out = out + torch.sum(self.embed(y) * h, 1, keepdim=True) | |
return out | |
def return_features(self, x, y=None): | |
# Stick x into h for cleaner for loops without flow control | |
h = x | |
block_output = [] | |
# Loop over blocks | |
for index, blocklist in enumerate(self.blocks): | |
for block in blocklist: | |
h = block(h) | |
block_output.append(h) | |
# Apply global sum pooling as in SN-GAN | |
# h = torch.sum(self.activation(h), [2, 3]) | |
return block_output | |
class WDiscriminator(nn.Module): | |
def __init__(self, D_ch=64, D_wide=True, resolution=resolution, | |
D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE, | |
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False), | |
SN_eps=1e-8, output_dim=NUM_WRITERS, D_mixed_precision=False, D_fp16=False, | |
D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs): | |
super(WDiscriminator, self).__init__() | |
self.name = 'D' | |
# gpu_ids | |
self.gpu_ids = gpu_ids | |
# one_hot representation | |
self.one_hot = one_hot | |
# Width multiplier | |
self.ch = D_ch | |
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN? | |
self.D_wide = D_wide | |
# Resolution | |
self.resolution = resolution | |
# Kernel size | |
self.kernel_size = D_kernel_size | |
# Attention? | |
self.attention = D_attn | |
# Number of classes | |
self.n_classes = n_classes | |
# Activation | |
self.activation = D_activation | |
# Initialization style | |
self.init = D_init | |
# Parameterization style | |
self.D_param = D_param | |
# Epsilon for Spectral Norm? | |
self.SN_eps = SN_eps | |
# Fp16? | |
self.fp16 = D_fp16 | |
# Architecture | |
self.arch = D_arch(self.ch, self.attention, input_nc)[resolution] | |
# Which convs, batchnorms, and linear layers to use | |
# No option to turn off SN in D right now | |
if self.D_param == 'SN': | |
self.which_conv = functools.partial(layers.SNConv2d, | |
kernel_size=3, padding=1, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
self.which_linear = functools.partial(layers.SNLinear, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
self.which_embedding = functools.partial(layers.SNEmbedding, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
if bn_linear=='SN': | |
self.which_embedding = functools.partial(layers.SNLinear, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
else: | |
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1) | |
self.which_linear = nn.Linear | |
# We use a non-spectral-normed embedding here regardless; | |
# For some reason applying SN to G's embedding seems to randomly cripple G | |
self.which_embedding = nn.Embedding | |
if one_hot: | |
self.which_embedding = functools.partial(layers.SNLinear, | |
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, | |
eps=self.SN_eps) | |
# Prepare model | |
# self.blocks is a doubly-nested list of modules, the outer loop intended | |
# to be over blocks at a given resolution (resblocks and/or self-attention) | |
self.blocks = [] | |
for index in range(len(self.arch['out_channels'])): | |
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index], | |
out_channels=self.arch['out_channels'][index], | |
which_conv=self.which_conv, | |
wide=self.D_wide, | |
activation=self.activation, | |
preactivation=(index > 0), | |
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]] | |
# If attention on this block, attach it to the end | |
if self.arch['attention'][self.arch['resolution'][index]]: | |
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index]) | |
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], | |
self.which_conv)] | |
# Turn self.blocks into a ModuleList so that it's all properly registered. | |
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) | |
# Linear output layer. The output dimension is typically 1, but may be | |
# larger if we're e.g. turning this into a VAE with an inference output | |
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim) | |
# Embedding for projection discrimination | |
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1]) | |
self.cross_entropy = nn.CrossEntropyLoss() | |
# Initialize weights | |
if not skip_init: | |
self = init_weights(self, D_init) | |
def forward(self, x, y=None, **kwargs): | |
# Stick x into h for cleaner for loops without flow control | |
h = x | |
# Loop over blocks | |
for index, blocklist in enumerate(self.blocks): | |
for block in blocklist: | |
h = block(h) | |
# Apply global sum pooling as in SN-GAN | |
h = torch.sum(self.activation(h), [2, 3]) | |
# Get initial class-unconditional output | |
out = self.linear(h) | |
# Get projection of final featureset onto class vectors and add to evidence | |
#if y is not None: | |
#out = out + torch.sum(self.embed(y) * h, 1, keepdim=True) | |
loss = self.cross_entropy(out, y.long()) | |
return loss | |
def return_features(self, x, y=None): | |
# Stick x into h for cleaner for loops without flow control | |
h = x | |
block_output = [] | |
# Loop over blocks | |
for index, blocklist in enumerate(self.blocks): | |
for block in blocklist: | |
h = block(h) | |
block_output.append(h) | |
# Apply global sum pooling as in SN-GAN | |
# h = torch.sum(self.activation(h), [2, 3]) | |
return block_output | |
class Encoder(Discriminator): | |
def __init__(self, opt, output_dim, **kwargs): | |
super(Encoder, self).__init__(**vars(opt)) | |
self.output_layer = nn.Sequential(self.activation, | |
nn.Conv2d(self.arch['out_channels'][-1], output_dim, kernel_size=(4,2), padding=0, stride=2)) | |
def forward(self, x): | |
# Stick x into h for cleaner for loops without flow control | |
h = x | |
# Loop over blocks | |
for index, blocklist in enumerate(self.blocks): | |
for block in blocklist: | |
h = block(h) | |
out = self.output_layer(h) | |
return out | |
class BiDiscriminator(nn.Module): | |
def __init__(self, opt): | |
super(BiDiscriminator, self).__init__() | |
self.infer_img = Encoder(opt, output_dim=opt.nimg_features) | |
# self.infer_z = nn.Sequential( | |
# nn.Conv2d(opt.dim_z, 512, 1, stride=1, bias=False), | |
# nn.LeakyReLU(inplace=True), | |
# nn.Dropout2d(p=self.dropout), | |
# nn.Conv2d(512, opt.nz_features, 1, stride=1, bias=False), | |
# nn.LeakyReLU(inplace=True), | |
# nn.Dropout2d(p=self.dropout) | |
# ) | |
self.infer_joint = nn.Sequential( | |
nn.Conv2d(opt.dim_z+opt.nimg_features, 1024, 1, stride=1, bias=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(1024, 1024, 1, stride=1, bias=True), | |
nn.ReLU(inplace=True) | |
) | |
self.final = nn.Conv2d(1024, 1, 1, stride=1, bias=True) | |
def forward(self, x, z, **kwargs): | |
output_x = self.infer_img(x) | |
# output_z = self.infer_z(z) | |
if len(z.shape)==2: | |
z = z.unsqueeze(2).unsqueeze(2).repeat((1,1,1,output_x.shape[3])) | |
output_features = self.infer_joint(torch.cat([output_x, z], dim=1)) | |
output = self.final(output_features) | |
return output | |
# Parallelized G_D to minimize cross-gpu communication | |
# Without this, Generator outputs would get all-gathered and then rebroadcast. | |
class G_D(nn.Module): | |
def __init__(self, G, D): | |
super(G_D, self).__init__() | |
self.G = G | |
self.D = D | |
def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False, | |
split_D=False): | |
# If training G, enable grad tape | |
with torch.set_grad_enabled(train_G): | |
# Get Generator output given noise | |
G_z = self.G(z, self.G.shared(gy)) | |
# Cast as necessary | |
if self.G.fp16 and not self.D.fp16: | |
G_z = G_z.float() | |
if self.D.fp16 and not self.G.fp16: | |
G_z = G_z.half() | |
# Split_D means to run D once with real data and once with fake, | |
# rather than concatenating along the batch dimension. | |
if split_D: | |
D_fake = self.D(G_z, gy) | |
if x is not None: | |
D_real = self.D(x, dy) | |
return D_fake, D_real | |
else: | |
if return_G_z: | |
return D_fake, G_z | |
else: | |
return D_fake | |
# If real data is provided, concatenate it with the Generator's output | |
# along the batch dimension for improved efficiency. | |
else: | |
D_input = torch.cat([G_z, x], 0) if x is not None else G_z | |
D_class = torch.cat([gy, dy], 0) if dy is not None else gy | |
# Get Discriminator output | |
D_out = self.D(D_input, D_class) | |
if x is not None: | |
return torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real | |
else: | |
if return_G_z: | |
return D_out, G_z | |
else: | |
return D_out | |