peekaboo-demo / data /generate_imc.py
Anshul Nasery
Demo commit
44f2ca8
raw
history blame
9.35 kB
import json
import numpy as np
import random
import csv
import pickle
import tqdm
def clamp(x, min_val, max_val):
return int(max(min(x, max_val), min_val))
def generate_moving_frames_simpler(canvas_size, num_frames, aspect_ratio, bounding_box_size, motion_type, up_to_down_strict=False, keep_in_frame=True):
# Mapping size to bounding box dimensions
size_mapping = {'Small': 0.25, 'Medium': 0.3, 'Large': 0.3}
aspect_ratio_mapping = {'Rectangle Vertical': (1.33, 1), 'Rectangle Horizontal': (1, 1.33), 'Square': (1, 1)}
# Calculate bounding box dimensions
ratio = aspect_ratio_mapping[aspect_ratio]
box_height = int(canvas_size[0] * size_mapping[bounding_box_size] * ratio[0])
box_width = int(canvas_size[1] * size_mapping[bounding_box_size] * ratio[1])
x_init_pos = [0.1 * canvas_size[1], 0.25 * canvas_size[1], 0.45*canvas_size[1], 0.7 * canvas_size[1]]
y_init_pos = [0.1 * canvas_size[0], 0.25 * canvas_size[0], 0.45*canvas_size[0], 0.7 * canvas_size[0]]
speed_dir = random.choice([-1,1]) # random.randint(1, 3)*4
# print('-'*20)
# print(motion_type)
if 'up' in motion_type.lower():
# Freedom in horizontal init
# Vertical init depends on upward or downward motion
pos_x = random.choice(x_init_pos) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
if up_to_down_strict == 'up':
# pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
speed_dir = -1.
elif up_to_down_strict == 'down':
# pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
speed_dir = 1.
# y_end_max = canvas_size[0] - box_height
# else:
if speed_dir == 1.:
pos_y = np.random.choice(y_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = canvas_size[0] - box_height
else:
pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = box_height
max_speed = np.abs(y_end_max - pos_y) / num_frames
speed = random.randint(2, 4)*4
speed = min(speed, max_speed)
speed = speed_dir * speed
elif 'left' in motion_type.lower():
# Freedom in vertical init
# Horizontal init depends on upward or downward motion
pos_y = random.choice(y_init_pos) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
if up_to_down_strict:
speed_dir = 1.
if speed_dir == 1.:
pos_x = np.random.choice(x_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = canvas_size[1] - box_width
else:
pos_x = np.random.choice(x_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = box_width
max_speed = np.abs(x_end_max - pos_x) / num_frames
speed = random.randint(2, 4)*4
speed = min(speed, max_speed)
speed = speed_dir * speed
else:
speed_dir_y = random.choice([-1,1])
if speed_dir == 1.:
pos_x = np.random.choice(x_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = canvas_size[1] - box_width
else:
pos_x = np.random.choice(x_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = box_width
if speed_dir_y == 1.:
pos_y = np.random.choice(y_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = canvas_size[0] - box_height
else:
pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = box_height
max_speed_x = np.abs(x_end_max - pos_x) / num_frames
max_speed_y = np.abs(y_end_max - pos_y) / num_frames
speed_x = random.randint(2, 4)*4
speed_y = random.randint(2, 4)*4
speed_x = min(speed_x, max_speed_x)
speed_y = min(speed_y, max_speed_y)
speed_x, speed_y = (speed_dir * speed_x, speed_dir_y * speed_y)
frames = []
for _ in range(num_frames):
canvas = np.zeros(canvas_size)
# Determine movement direction and apply movement
if motion_type == "Left to right":
pos_x = (pos_x + speed) # % (canvas_size[1] - box_width)
pos_y = pos_y + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
elif motion_type == "Up to down":
pos_y = (pos_y + speed) # % (canvas_size[0] - box_height)
pos_x = pos_x + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
elif motion_type == "Zig-zag":
# Zig-zag motion alternates between horizontal and vertical movement
if _ % 2 == 0:
pos_x = (pos_x + speed_x) # % (canvas_size[1] - box_width)
else:
pos_y = (pos_y + speed_y) # % (canvas_size[0] - box_height)
canvas[clamp(pos_y, 0, canvas_size[0]):clamp(pos_y + box_height, 0, canvas_size[0]),
clamp(pos_x, 0, canvas_size[1]):clamp(pos_x + box_width, 0, canvas_size[1])] = 1
# Add frame to the list
frames.append(canvas)
return frames
def generate_stationary_frames_simpler(canvas_size, num_frames, aspect_ratio, bounding_box_size):
# Mapping size to bounding box dimensions
size_mapping = {'Small': 0.25, 'Medium': 0.3, 'Large': 0.3}
aspect_ratio_mapping = {'Rectangle Vertical': (1.33, 1), 'Rectangle Horizontal': (1, 1.33), 'Square': (1, 1)}
# Calculate bounding box dimensions
ratio = aspect_ratio_mapping[aspect_ratio]
box_height = int(canvas_size[0] * size_mapping[bounding_box_size] * ratio[0])
box_width = int(canvas_size[1] * size_mapping[bounding_box_size] * ratio[1])
x_init_pos = [0.1 * canvas_size[1], 0.25 * canvas_size[1], 0.45*canvas_size[1], 0.7 * canvas_size[1]]
y_init_pos = [0.1 * canvas_size[0], 0.25 * canvas_size[0], 0.45*canvas_size[0], 0.7 * canvas_size[0]]
pos_x = np.random.choice(x_init_pos) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
pos_y = np.random.choice(y_init_pos) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
# Initialize frames
frames = []
for _ in range(num_frames):
canvas = np.zeros(canvas_size)
# Determine movement direction and apply movement
pos_y = pos_y + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
pos_x = pos_x + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
canvas[clamp(pos_y, 0, canvas_size[0]):clamp(pos_y + box_height, 0, canvas_size[0]),
clamp(pos_x, 0, canvas_size[1]):clamp(pos_x + box_width, 0, canvas_size[1])] = 1
# Add frame to the list
frames.append(canvas)
return frames
input_file_path = "custom_prompts.csv"
output_file_path = "custom_prompts_with_bb.pkl"
num_videos_per_prompt = 3
video_id = 1100
all_records = []
frames_per_prompts = 3
num_frames = 16
with open('filtered_prompts.txt') as f:
GOOD_PROMPTS = set([x.strip() for x in f.readlines()])
with open(input_file_path, "r") as f:
data = csv.reader(f)
for row in tqdm.tqdm(data):
prompt = row[0]
prompt = prompt.replace('herd of', '').replace('group of', '').replace('flock of', '').replace('school of', '').replace('escalator', 'elevator')
subject = row[1].lower().replace('herd of', '').replace('group of', '').replace('flock of', '').replace('school of', '').replace('escalator', 'elevator')
if prompt not in GOOD_PROMPTS:
continue
canvas_size = (224, 224)
frames = []
if row[-1] == "Stationary":
for _ in range(frames_per_prompts):
frames.append(generate_stationary_frames_simpler(canvas_size, num_frames, row[3], row[2]))
else:
for _ in range(frames_per_prompts):
up_to_down_strict = False
if "up" in prompt.lower() or 'ascending' in prompt.lower():
up_to_down_strict = 'up'
elif "down" in prompt.lower() or 'descending' in prompt.lower():
up_to_down_strict = 'down'
else:
up_to_down_strict = False
frames.append(generate_moving_frames_simpler(canvas_size, num_frames, row[3], row[2], row[4], up_to_down_strict))
for i in range(frames_per_prompts):
record_dict = {"video_id": video_id, "prompt": prompt, "frames": frames[i], "subject": row[1], "motion": row[4], "aspect_ratio": row[3], "bounding_box_size": row[2]}
all_records.append(record_dict)
video_id += 1
print(f"Wrote {len(all_records)} records to {output_file_path}")
with open(output_file_path, "wb") as f:
pickle.dump(all_records, f)