Spaces:
Running
on
T4
Running
on
T4
import logging | |
import warnings | |
import gradio as gr | |
import pytube as pt | |
import torch | |
from huggingface_hub import model_info | |
from transformers import pipeline | |
from transformers.utils.logging import disable_progress_bar | |
warnings.filterwarnings("ignore") | |
disable_progress_bar() | |
# MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french" | |
MODEL_NAME = "bofenghuang/whisper-large-v3-french" | |
# MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/whisper-large-v3-ft-french-pnc-ep5-bs280-lr4e6-wd001-audioaug-specaug" | |
# MODEL_NAME = "/home/bhuang/transformers/examples/pytorch/speech-recognition/outputs/hf_whisper/tmp_model" | |
# MODEL_NAME = "/projects/bhuang/models/asr/public/whisper-large-v3-french" | |
CHUNK_LENGTH_S = 30 | |
logging.basicConfig( | |
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s", | |
datefmt="%Y-%m-%dT%H:%M:%SZ", | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.DEBUG) | |
device = 0 if torch.cuda.is_available() else "cpu" | |
logger.info(f"Model will be loaded on device `{device}`") | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=CHUNK_LENGTH_S, | |
device=device, | |
) | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe") | |
def transcribe(microphone, file_upload): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
text = pipe(file)["text"] | |
logger.info(f"Transcription: {text}") | |
return warn_output + text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def yt_transcribe(yt_url): | |
yt = pt.YouTube(yt_url) | |
html_embed_str = _return_yt_html_embed(yt_url) | |
stream = yt.streams.filter(only_audio=True)[0] | |
stream.download(filename="audio.mp3") | |
text = pipe("audio.mp3")["text"] | |
logger.info(f'Transcription of "{yt_url}": {text}') | |
return html_embed_str, text | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.components.Audio(sources="microphone", type="filepath", label="Record"), | |
gr.components.Audio(sources="upload", type="filepath", label="Upload File"), | |
], | |
# outputs="text", | |
outputs=gr.components.Textbox(label="Transcription", show_copy_button=True), | |
# layout="horizontal", | |
theme="huggingface", | |
title="Whisper French Demo π«π· : Transcribe Audio", | |
# description=( | |
# "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" | |
# f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
# " of arbitrary length." | |
# ), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], | |
# outputs=["html", "text"], | |
outputs=[ | |
gr.components.HTML(label="YouTube Page"), | |
gr.components.Textbox(label="Transcription", show_copy_button=True), | |
], | |
# layout="horizontal", | |
theme="huggingface", | |
title="Whisper French Demo π«π· : Transcribe YouTube", | |
# description=( | |
# "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:" | |
# f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files of" | |
# " arbitrary length." | |
# ), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) | |
# demo.launch(server_name="0.0.0.0", debug=True, share=True) | |
# demo.launch(enable_queue=True) | |
# see https://github.com/gradio-app/gradio/issues/2551 | |
demo.queue(max_size=10).launch(server_name="0.0.0.0", debug=True, share=True, ssl_certfile="/home/bhuang/tools/cert.pem", ssl_keyfile="/home/bhuang/tools/key.pem", ssl_verify=False) | |