File size: 5,489 Bytes
7a7a355
a262720
 
 
 
 
 
 
 
7a7a355
914b2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a262720
 
 
 
7a7a355
a262720
 
7a7a355
a262720
 
 
 
83aac3a
 
a262720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
023278e
a262720
 
a9f5f7e
a262720
 
 
 
 
84b1873
 
 
 
 
 
 
a262720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from spacy import displacy
import en_ner_bc5cdr_md

from streamlit.components.v1 import html

def nav_page(page_name, timeout_secs=3):
    nav_script = """
        <script type="text/javascript">
            function attempt_nav_page(page_name, start_time, timeout_secs) {
                var links = window.parent.document.getElementsByTagName("a");
                for (var i = 0; i < links.length; i++) {
                    if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
                        links[i].click();
                        return;
                    }
                }
                var elasped = new Date() - start_time;
                if (elasped < timeout_secs * 1000) {
                    setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
                } else {
                    alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
                }
            }
            window.addEventListener("load", function() {
                attempt_nav_page("%s", new Date(), %d);
            });
        </script>
    """ % (page_name, timeout_secs)
    html(nav_script)
    

# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
    st.session_state.visibility = "visible"
    st.session_state.disabled = False

#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")

st.set_page_config(page_title ='Clinical Note Summarization', 
                   #page_icon= "Notes",
                   layout='wide')
st.title('Clinical Note Summarization')
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -230px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')

## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv('shpi_w_rouge21Nov.csv')
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))

#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
                  'HADM_ID':'Admission_ID',
                  'hpi_input_text':'Original_Text',
                  'hpi_reference_summary':'Reference_text'}, inplace = True)
 
 #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)

#Filter selection 
st.sidebar.header("Search for Patient:")

patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox('', admissionid) 

# List of Model available
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))

col3,col4 = st.columns(2) 
patientid = col3.write(f"Patient ID:  {patient} ")
admissionid =col4.write(f"Admission ID:  {HospitalAdmission} ")


##========= Buttons to the 4 tabs ========
col1, col2, col3, col4 = st.columns(4)
with col1:
#    st.button('Admission')
    st.button("🏥 Admission")
    nav_page("Admission")
with col2:
    st.button('📆Daily Narrative')
    nav_page("Daily Narrative")
with col3:
    st.button('Discharge Plan')
with col4:
    st.button('📝Social Notes')

if st.button("🏥 Admission")
   nav_page("Admission")
if st.button('📆Daily Narrative')
    nav_page("Daily Narrative")
#if st.button('Discharge Plan')
#if st.button('📝Social Notes')
    
# Query out relevant Clinical notes
original_text =  df.query(
    "Patient_ID  == @patient & Admission_ID == @HospitalAdmission"
)

original_text2 = original_text['Original_Text'].values

runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)

reference_text = original_text['Reference_text'].values

def run_model(input_text):

    if model == "BertSummarizer":
        output = original_text['BertSummarizer'].values
        st.write('Summary')
        st.success(output[0])

    elif model == "BertGPT2":
        output = original_text['BertGPT2'].values
        st.write('Summary')
        st.success(output[0])
        
      
    elif model == "t5seq2eq": 
        output = original_text['t5seq2eq'].values
        st.write('Summary')
        st.success(output)
        
    elif model == "t5":
        output = original_text['t5'].values
        st.write('Summary')
        st.success(output)
        
    elif model == "gensim": 
        output = original_text['gensim'].values
        st.write('Summary')
        st.success(output)
        
    elif model == "pysummarizer": 
        output = original_text['pysummarizer'].values
        st.write('Summary')
        st.success(output)

col1, col2 = st.columns([1,1])

with col1:
    st.button('Summarize')
    run_model(runtext)
    sentences=runtext.split('.')
    st.text_area('Reference text', str(reference_text))#,label_visibility="hidden")
with col2:
    st.button('NER')
    doc = nlp(str(original_text2))
    colors = { "DISEASE": "pink","CHEMICAL": "orange"}
    options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
    ent_html = displacy.render(doc, style="ent", options=options)
    st.markdown(ent_html, unsafe_allow_html=True)