Spaces:
Build error
Build error
File size: 5,154 Bytes
7a7a355 a262720 a6cd4f9 a262720 62b65fb a6cd4f9 914b2c0 a262720 7a7a355 a262720 7a7a355 a262720 83aac3a a262720 1daf94c d3237a7 93b90c5 a763bb2 a262720 eca3574 24b738e 8a87f20 c9f00f3 8a87f20 c9f00f3 8a87f20 c9f00f3 8a87f20 c9f00f3 8a87f20 75dc831 c9f00f3 8a87f20 c9f00f3 8a87f20 c9f00f3 f2ef1d4 c9f00f3 eca3574 2f6ed2c 57dc050 1ed7511 72a0309 c829a64 72a0309 7c19aad a262720 e07fdc0 a262720 e07fdc0 07700ad 975305a 9e1a679 e07fdc0 a262720 a08ccc9 c83ff75 305d5e2 9e1a679 a262720 308d221 a262720 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from spacy import displacy
from spacy.lang.en import English
import en_ner_bc5cdr_md
from streamlit.components.v1 import html
# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")
st.set_page_config(page_title ='Clinical Note Summarization',
#page_icon= "Notes",
layout='wide')
st.title('Clinical Note Summarization')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 400px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 400px;
margin-left: -230px;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')
## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv('shpi_w_rouge21Nov.csv')
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'hpi_input_text':'Original_Text',
'hpi_reference_summary':'Reference_text'}, inplace = True)
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
#Filter selection
st.sidebar.header("Search for Patient:")
patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox('', admissionid)
# List of Model available
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
col3,col4 = st.columns(2)
patientid = col3.write(f"Patient ID: {patient} ")
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
runtext = ''
inputNote ='Input note here:'
# Query out relevant Clinical notes
original_text = df.query(
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
reference_text = original_text['Reference_text'].values
##========= Buttons to the 4 tabs ========
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button("🏥 Admission"):
#nav_page('Admission')
inputNote = "Input Admission Note"
with col2:
if st.button('📆Daily Narrative'):
#nav_page('Daily Narrative')
inputNote = "Input Daily Narrative Note"
with col3:
if st.button('🗒️Discharge Plan'):
#nav_page('Discharge Plan')
inputNote = "Input Discharge Plan"
with col4:
if st.button('📝Social Notes'):
#nav_page('Social Notes')
inputNote = "Input Social Note"
runtext =st.text_area(inputNote, str(original_text2), height=300)
def visualize (run_text,output):
text =''
splitruntext = [x for x in runtext.split('.')]
splitoutput = [x for x in output.split('.')]
# best_sentences = []
# for sentence in output:
# best_sentences.append(str(sentence))
# text = ''
# #display(HTML(f'<h1>Summary - {title}</h1>'))
# for sentence in run_text:
# if sentence in best_sentences:
# text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
# else:
# text += ' ' + sentence
# display(HTML(f""" {text} """))
return splitoutput,splitruntext
def run_model(input_text):
if model == "BertSummarizer":
output = original_text['BertSummarizer'].values
st.write('Summary')
elif model == "BertGPT2":
output = original_text['BertGPT2'].values
st.write('Summary')
elif model == "t5seq2eq":
output = original_text['t5seq2eq'].values
st.write('Summary')
elif model == "t5":
output = original_text['t5'].values
st.write('Summary')
elif model == "gensim":
output = original_text['gensim'].values
st.write('Summary')
elif model == "pysummarizer":
output = original_text['pysummarizer'].values
st.write('Summary')
#st.text_area(visualize (runtext,output))
st.success(output)
# return output
col1, col2 = st.columns([1,1])
with col1:
st.button('Summarize')
run_model(runtext)
sentences=runtext.split('.')
st.text_area('Reference text', str(reference_text), height=150)
test = pd.DataFrame(
np.random.randn(10, 5),
columns=('col %d' % i for i in range(5)))
st.table(test)
with col2:
st.button('NER')
doc = nlp(str(original_text2))
colors = { "DISEASE": "pink","CHEMICAL": "orange"}
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
ent_html = displacy.render(doc, style="ent", options=options)
st.markdown(ent_html, unsafe_allow_html=True)
|