File size: 5,154 Bytes
7a7a355
a262720
 
 
 
 
 
 
a6cd4f9
a262720
62b65fb
a6cd4f9
914b2c0
 
 
a262720
 
 
 
7a7a355
a262720
 
7a7a355
a262720
 
 
 
83aac3a
 
a262720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1daf94c
d3237a7
93b90c5
 
 
 
a763bb2
 
 
a262720
eca3574
24b738e
8a87f20
c9f00f3
8a87f20
c9f00f3
8a87f20
 
c9f00f3
8a87f20
c9f00f3
8a87f20
75dc831
c9f00f3
 
8a87f20
c9f00f3
8a87f20
c9f00f3
f2ef1d4
c9f00f3
eca3574
2f6ed2c
57dc050
1ed7511
72a0309
 
 
 
 
 
 
 
 
 
 
 
 
 
c829a64
72a0309
7c19aad
 
 
a262720
 
 
 
 
 
 
 
 
 
 
 
e07fdc0
a262720
 
 
 
 
 
 
 
 
 
 
e07fdc0
07700ad
975305a
9e1a679
e07fdc0
a262720
 
 
 
 
 
a08ccc9
c83ff75
 
 
 
 
305d5e2
9e1a679
a262720
 
 
 
 
 
308d221
 
a262720
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from spacy import displacy
from spacy.lang.en import English
import en_ner_bc5cdr_md


from streamlit.components.v1 import html


# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
    st.session_state.visibility = "visible"
    st.session_state.disabled = False

#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")

st.set_page_config(page_title ='Clinical Note Summarization', 
                   #page_icon= "Notes",
                   layout='wide')
st.title('Clinical Note Summarization')
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -230px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')

## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv('shpi_w_rouge21Nov.csv')
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))

#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
                  'HADM_ID':'Admission_ID',
                  'hpi_input_text':'Original_Text',
                  'hpi_reference_summary':'Reference_text'}, inplace = True)
 
 #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)

#Filter selection 
st.sidebar.header("Search for Patient:")

patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox('', admissionid) 

# List of Model available
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))

col3,col4 = st.columns(2) 
patientid = col3.write(f"Patient ID:  {patient} ")
admissionid =col4.write(f"Admission ID:  {HospitalAdmission} ")
runtext = ''
inputNote  ='Input note here:'
# Query out relevant Clinical notes
original_text =  df.query(
    "Patient_ID  == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
reference_text = original_text['Reference_text'].values

##========= Buttons to the 4 tabs ========
col1, col2, col3, col4 = st.columns(4)

with col1:
    if st.button("🏥 Admission"):
        #nav_page('Admission')
        inputNote = "Input Admission Note"
    
with col2:
    if st.button('📆Daily Narrative'):
        #nav_page('Daily Narrative')
        inputNote = "Input Daily Narrative Note"
with col3:
    if st.button('🗒️Discharge Plan'):
        #nav_page('Discharge Plan')  
        inputNote = "Input Discharge Plan"
with col4:
    if st.button('📝Social Notes'):
        #nav_page('Social Notes')
        inputNote = "Input Social Note"

runtext =st.text_area(inputNote, str(original_text2), height=300)


def visualize (run_text,output):
    text =''
    splitruntext = [x for x in runtext.split('.')]
    splitoutput = [x for x in output.split('.')]
#    best_sentences = []
#    for sentence in output:
#       best_sentences.append(str(sentence))

#    text = ''

#    #display(HTML(f'<h1>Summary - {title}</h1>'))
#    for sentence in run_text:
#        if sentence in best_sentences:
#            text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
#        else:
#            text += ' ' + sentence
    #    display(HTML(f""" {text} """))
    return splitoutput,splitruntext
    

def run_model(input_text):    
    if model == "BertSummarizer":
        output = original_text['BertSummarizer'].values
        st.write('Summary')

    elif model == "BertGPT2":
        output = original_text['BertGPT2'].values
        st.write('Summary')
        
      
    elif model == "t5seq2eq": 
        output = original_text['t5seq2eq'].values
        st.write('Summary')
         
    elif model == "t5":
        output = original_text['t5'].values
        st.write('Summary')
        
    elif model == "gensim": 
        output = original_text['gensim'].values
        st.write('Summary')
        
    elif model == "pysummarizer": 
        output = original_text['pysummarizer'].values
        st.write('Summary')

    #st.text_area(visualize (runtext,output))
    st.success(output)
   # return output


col1, col2 = st.columns([1,1])
with col1:
    st.button('Summarize')
    run_model(runtext)
    sentences=runtext.split('.')
    st.text_area('Reference text', str(reference_text), height=150)
    test = pd.DataFrame(
        np.random.randn(10, 5),
       columns=('col %d' % i for i in range(5)))

    st.table(test)
  

with col2:
    st.button('NER')
    doc = nlp(str(original_text2))
    colors = { "DISEASE": "pink","CHEMICAL": "orange"}
    options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
    ent_html = displacy.render(doc, style="ent", options=options)
    st.markdown(ent_html, unsafe_allow_html=True)