Spaces:
Build error
Build error
File size: 5,688 Bytes
7a7a355 a262720 7a7a355 914b2c0 06ff6d2 914b2c0 a262720 7a7a355 a262720 7a7a355 a262720 83aac3a a262720 1daf94c a262720 a763bb2 a262720 a763bb2 bf0ee71 a763bb2 a262720 f2d7259 bf0ee71 a262720 ec2cfa3 bf0ee71 a262720 ec2cfa3 bf0ee71 84b1873 a262720 bf0ee71 a262720 a763bb2 a262720 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from spacy import displacy
import en_ner_bc5cdr_md
from streamlit.components.v1 import html
def nav_page(page_name, timeout_secs=8):
nav_script = """
<script type="text/javascript">
function attempt_nav_page(page_name, start_time, timeout_secs) {
var links = window.parent.document.getElementsByTagName("a");
for (var i = 0; i < links.length; i++) {
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
links[i].click();
return;
}
}
var elasped = new Date() - start_time;
if (elasped < timeout_secs * 1000) {
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
} else {
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
}
}
window.addEventListener("load", function() {
attempt_nav_page("%s", new Date(), %d);
});
</script>
""" % (page_name, timeout_secs)
html(nav_script)
# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")
st.set_page_config(page_title ='Clinical Note Summarization',
#page_icon= "Notes",
layout='wide')
st.title('Clinical Note Summarization')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 400px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 400px;
margin-left: -230px;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')
## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv('shpi_w_rouge21Nov.csv')
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'hpi_input_text':'Original_Text',
'hpi_reference_summary':'Reference_text'}, inplace = True)
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
#Filter selection
st.sidebar.header("Search for Patient:")
patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox('', admissionid)
# List of Model available
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
col3,col4 = st.columns(2)
patientid = col3.write(f"Patient ID: {patient} ")
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
runtext = ''
original_text2 = original_text['Original_Text'].values
reference_text = original_text['Reference_text'].values
##========= Buttons to the 4 tabs ========
col1, col2, col3, col4 = st.columns(4)
with col1:
# st.button('Admission')
st.button("🏥 Admission")
#nav_page('Admission')
runtext =st.text_area('Input Admission note here:', str(original_text2), height=300)
with col2:
if st.button('📆Daily Narrative'):
#nav_page('Daily Narrative')
runtext =st.text_area('Input Daily Narrative here:', str(original_text2), height=300)
with col3:
if st.button('Discharge Plan'):
#nav_page('Discharge Plan')
runtext =st.text_area('Input Discharge Plan here:', str(original_text2), height=300)
with col4:
if st.button('📝Social Notes'):
#nav_page('Social Notes')
runtext =st.text_area('Input Social Note here:', str(original_text2), height=300)
# Query out relevant Clinical notes
original_text = df.query(
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
)
def run_model(input_text):
if model == "BertSummarizer":
output = original_text['BertSummarizer'].values
st.write('Summary')
st.success(output[0])
elif model == "BertGPT2":
output = original_text['BertGPT2'].values
st.write('Summary')
st.success(output[0])
elif model == "t5seq2eq":
output = original_text['t5seq2eq'].values
st.write('Summary')
st.success(output)
elif model == "t5":
output = original_text['t5'].values
st.write('Summary')
st.success(output)
elif model == "gensim":
output = original_text['gensim'].values
st.write('Summary')
st.success(output)
elif model == "pysummarizer":
output = original_text['pysummarizer'].values
st.write('Summary')
st.success(output)
col1, col2 = st.columns([1,1])
with col1:
st.button('Summarize')
run_model(runtext)
sentences=runtext.split('.')
st.text_area('Reference text', str(reference_text))#,label_visibility="hidden")
with col2:
st.button('NER')
doc = nlp(str(original_text2))
colors = { "DISEASE": "pink","CHEMICAL": "orange"}
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
ent_html = displacy.render(doc, style="ent", options=options)
st.markdown(ent_html, unsafe_allow_html=True)
|