File size: 6,275 Bytes
7a7a355
a262720
 
 
 
 
 
 
 
7a7a355
914b2c0
 
06ff6d2
914b2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a262720
 
 
 
7a7a355
a262720
 
7a7a355
a262720
 
 
 
83aac3a
 
a262720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1daf94c
d3237a7
93b90c5
 
 
 
a763bb2
 
 
a262720
eca3574
24b738e
8a87f20
c9f00f3
8a87f20
c9f00f3
8a87f20
 
c9f00f3
8a87f20
c9f00f3
8a87f20
75dc831
c9f00f3
 
8a87f20
c9f00f3
8a87f20
c9f00f3
f2ef1d4
c9f00f3
eca3574
57dc050
1ed7511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a262720
7c19aad
 
 
a262720
 
 
 
 
 
 
 
 
 
 
 
e07fdc0
a262720
 
 
 
 
 
 
 
 
 
 
e07fdc0
 
 
 
a262720
 
 
 
 
 
 
1ed7511
a262720
 
 
 
 
 
308d221
 
853acac
528dfba
4e0ee30
b6e76e7
1ed7511
4e0ee30
 
a262720
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from spacy import displacy
import en_ner_bc5cdr_md

from streamlit.components.v1 import html

def nav_page(page_name, timeout_secs=8):
    nav_script = """
        <script type="text/javascript">
            function attempt_nav_page(page_name, start_time, timeout_secs) {
                var links = window.parent.document.getElementsByTagName("a");
                for (var i = 0; i < links.length; i++) {
                    if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
                        links[i].click();
                        return;
                    }
                }
                var elasped = new Date() - start_time;
                if (elasped < timeout_secs * 1000) {
                    setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
                } else {
                    alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
                }
            }
            window.addEventListener("load", function() {
                attempt_nav_page("%s", new Date(), %d);
            });
        </script>
    """ % (page_name, timeout_secs)
    html(nav_script)
    

# Store the initial value of widgets in session state
if "visibility" not in st.session_state:
    st.session_state.visibility = "visible"
    st.session_state.disabled = False

#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")

st.set_page_config(page_title ='Clinical Note Summarization', 
                   #page_icon= "Notes",
                   layout='wide')
st.title('Clinical Note Summarization')
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -230px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')

## Loading in dataset
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
df = pd.read_csv('shpi_w_rouge21Nov.csv')
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))

#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
                  'HADM_ID':'Admission_ID',
                  'hpi_input_text':'Original_Text',
                  'hpi_reference_summary':'Reference_text'}, inplace = True)
 
 #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)

#Filter selection 
st.sidebar.header("Search for Patient:")

patientid = df['Patient_ID']
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
HospitalAdmission = st.sidebar.selectbox('', admissionid) 

# List of Model available
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))

col3,col4 = st.columns(2) 
patientid = col3.write(f"Patient ID:  {patient} ")
admissionid =col4.write(f"Admission ID:  {HospitalAdmission} ")
runtext = ''
inputNote  ='Input note here:'
# Query out relevant Clinical notes
original_text =  df.query(
    "Patient_ID  == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['Original_Text'].values
reference_text = original_text['Reference_text'].values

##========= Buttons to the 4 tabs ========
col1, col2, col3, col4 = st.columns(4)

with col1:
    if st.button("🏥 Admission"):
        #nav_page('Admission')
        inputNote = "Input Admission Note"
    
with col2:
    if st.button('📆Daily Narrative'):
        #nav_page('Daily Narrative')
        inputNote = "Input Daily Narrative Note"
with col3:
    if st.button('🗒️Discharge Plan'):
        #nav_page('Discharge Plan')  
        inputNote = "Input Discharge Plan"
with col4:
    if st.button('📝Social Notes'):
        #nav_page('Social Notes')
        inputNote = "Input Social Note"

runtext =st.text_area(inputNote, str(original_text2), height=300)

def visualize (run_text,output):
    text =''
    import spacy
    from spacy.lang.en import English # updated
    nlp=spacy.load('en_core_web_sm')
    sentences=run_text.split('.')
    summary=output.split('.')

    text = ''

    display(HTML(f'<h1>Summary - {title}</h1>'))
    for sentence in sentence_list:
        if sentence in best_sentences:
            text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
        else:
            text += ' ' + sentence
        display(HTML(f""" {text} """))
    best_sentences = []
    for sentence in summary:
       best_sentences.append(str(sentence))

    

def run_model(input_text):    
    if model == "BertSummarizer":
        output = original_text['BertSummarizer'].values
        st.write('Summary')

    elif model == "BertGPT2":
        output = original_text['BertGPT2'].values
        st.write('Summary')
        
      
    elif model == "t5seq2eq": 
        output = original_text['t5seq2eq'].values
        st.write('Summary')
         
    elif model == "t5":
        output = original_text['t5'].values
        st.write('Summary')
        
    elif model == "gensim": 
        output = original_text['gensim'].values
        st.write('Summary')
        
    elif model == "pysummarizer": 
        output = original_text['pysummarizer'].values
        st.write('Summary')

    st.text_area(visualize (runtext,output))



col1, col2 = st.columns([1,1])

with col1:
    st.button('Summarize')
    run_model(runtext)
    sentences=runtext.split('.')
    st.text_area('Reference text', str(reference_text))#,label_visibility="hidden")
with col2:
    st.button('NER')
    doc = nlp(str(original_text2))
    colors = { "DISEASE": "pink","CHEMICAL": "orange"}
    options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
    ent_html = displacy.render(doc, style="ent", options=options)
    st.markdown(ent_html, unsafe_allow_html=True) 
    
    
col3, col4 = st.columns(2)
with col3: 
    st.text_area(visualize (runtext,output))
    
with col4: 
    st.text_area('testing', str(reference_text))#,label_visibility="hidden")