File size: 3,630 Bytes
c20f071
 
 
44c8341
 
 
 
50edbe9
6506504
 
b7d6d94
633bc62
1a7661f
44c8341
50edbe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f8980
 
 
 
 
 
 
 
840fdaa
b7d6d94
 
 
 
 
9967649
b7d6d94
555d33d
 
 
 
840fdaa
0fbae15
fc829e4
 
cb13d0d
fc829e4
 
0fbae15
fc829e4
 
 
44c8341
 
8b25912
47aa6b1
fc829e4
 
 
 
 
 
 
 
 
 
 
47aa6b1
8b25912
 
 
35143f5
44c8341
85f8980
44c8341
2b584be
47aa6b1
8e30dea
38d614d
44c8341
0fbae15
7a972f8
6eb2572
44c8341
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
os.system("pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu")
os.system("pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.12.0+cpu.html")
import gradio as gr
from glycowork.ml.processing import dataset_to_dataloader
import numpy as np
import torch
import torch.nn as nn
from glycowork.motif.graph import glycan_to_nxGraph
import networkx as nx
import pydot
# import pygraphviz as pgv


class EnsembleModel(nn.Module):
    def __init__(self, models):
        super().__init__()
        self.models = models
        
    def forward(self, data):
      # Check if GPU available
      device = "cpu"
      if torch.cuda.is_available():
        device = "cuda:0"
      # Prepare data
      x = data.labels.to(device)
      edge_index = data.edge_index.to(device)
      batch = data.batch.to(device)
      y_pred = [model(x,edge_index, batch).cpu().detach().numpy() for model in self.models]
      y_pred = np.mean(y_pred,axis=0)[0]
      return y_pred
  
class_list=['Amoebozoa', 'Animalia', 'Bacteria', 'Bamfordvirae', 'Chromista', 'Euryarchaeota', 'Excavata', 'Fungi', 'Heunggongvirae', 
            'Orthornavirae', 'Pararnavirae', 'Plantae', 'Proteoarchaeota', 'Protista', 'Riboviria']

model1 = torch.load("model1.pt", map_location=torch.device('cpu'))
model2 = torch.load("model2.pt", map_location=torch.device('cpu'))
model3 = torch.load("model3.pt", map_location=torch.device('cpu'))

def fn(glycan, model):
    # Draw graph
    graph = glycan_to_nxGraph(glycan)
    node_labels = nx.get_node_attributes(graph, 'string_labels')
    labels = {i:node_labels[i] for i in range(len(graph.nodes))}
    graph = nx.relabel_nodes(graph, labels)
    graph = nx.drawing.nx_pydot.to_pydot(graph)
    graph.set_prog("dot")
    graph.write_png("graph.png")
    # write_dot(graph, "graph.dot")
    # graph=pgv.AGraph("graph.dot")  
    # graph.layout(prog='dot')
    # graph.draw("graph.png")
    # Perform inference
    if model == "No data augmentation":
      model_pred = model1
      model_pred.eval()
    elif model == "Ensemble":
      model_pred = model3
      model_pred.eval()
    else:
      model_pred = model2
      model_pred.eval()
    
    glycan = [glycan]
    label = [0]
    data = next(iter(dataset_to_dataloader(glycan, label, batch_size=1)))
    
    if model == "Ensemble":
        pred = model_pred(data)
    else:
        device = "cpu"
        x = data.labels
        edge_index = data.edge_index
        batch = data.batch
        x = x.to(device)
        edge_index = edge_index.to(device)
        batch = batch.to(device)
        pred = model_pred(x,edge_index, batch).cpu().detach().numpy()[0]
    
    pred = np.exp(pred)/sum(np.exp(pred)) # Softmax 
    pred = [float(x) for x in pred]
    pred = {class_list[i]:pred[i] for i in range(15)}
    return "graph.png", pred


demo = gr.Interface(
    fn=fn,
    inputs=[gr.Textbox(label="Glycan sequence"), gr.Radio(label="Model",choices=["No data augmentation", "Random node deletion", "Ensemble"])],
    outputs=[gr.Image(label="Glycan graph"), gr.Label(num_top_classes=15, label="Prediction")],
    allow_flagging="never",
    title="SweetNet demo",
    examples=[["GlcOSN(a1-4)GlcA(b1-4)GlcOSN(a1-4)GlcAOS(b1-4)GlcOSN(a1-4)GlcOSN", "No data augmentation"],
    ["Man(a1-2)Man(a1-3)[Man(a1-3)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc", "Random node deletion"],
    ["GlcNAc(b1-7)LDManHep(a1-6)Glc(a1-2)Glc(a1-3)[Gal(a1-6)]Glc(a1-3)[LDManHep(a1-7)]LDManHepOP(a1-3)LDManHepOP(a1-5)[Kdo(a2-4)]Kdo", "Ensemble"]]
)
demo.launch(debug=True)