MOFA-demo / README.md
David Krajewski
Added code to DL models
0528815
|
raw
history blame
1.25 kB
## Environment Setup
`pip install -r requirements.txt`
## Download checkpoints
1. Download the pretrained checkpoints of [SVD_xt](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1) from huggingface to `./ckpts`.
2. Download the checkpoint of [MOFA-Adapter](https://huggingface.co/MyNiuuu/MOFA-Video-Traj) from huggingface to `./ckpts`.
3. Download the checkpoint of CMP from [here](https://huggingface.co/MyNiuuu/MOFA-Video-Traj/blob/main/models/cmp/experiments/semiauto_annot/resnet50_vip%2Bmpii_liteflow/checkpoints/ckpt_iter_42000.pth.tar) and put it into `./models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/checkpoints`.
The final structure of checkpoints should be:
```text
./ckpts/
|-- controlnet
| |-- config.json
| `-- diffusion_pytorch_model.safetensors
|-- stable-video-diffusion-img2vid-xt-1-1
| |-- feature_extractor
| |-- ...
| |-- image_encoder
| |-- ...
| |-- scheduler
| |-- ...
| |-- unet
| |-- ...
| |-- unet_ch9
| |-- ...
| |-- vae
| |-- ...
| |-- svd_xt_1_1.safetensors
| `-- model_index.json
```
## Run Gradio Demo
`python run_gradio.py`
Please refer to the instructions on the gradio interface during the inference process.