gartajackhats1985's picture
Upload 45 files
028694a verified
raw
history blame
17.9 kB
import numpy as np
from torch import Tensor
import folder_paths
import comfy.sample
from comfy.model_patcher import ModelPatcher
from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet
from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX
from .nodes_weight import (DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights,
SoftControlNetWeightsSD15, CustomControlNetWeightsSD15, CustomControlNetWeightsFlux,
SoftT2IAdapterWeights, CustomT2IAdapterWeights)
from .nodes_keyframes import (LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode,
TimestepKeyframeNode, TimestepKeyframeInterpolationNode, TimestepKeyframeFromStrengthListNode)
from .nodes_sparsectrl import SparseCtrlMergedLoaderAdvanced, SparseCtrlLoaderAdvanced, SparseIndexMethodNode, SparseSpreadMethodNode, RgbSparseCtrlPreprocessor, SparseWeightExtras
from .nodes_reference import ReferenceControlNetNode, ReferenceControlFinetune, ReferencePreprocessorNode
from .nodes_plusplus import PlusPlusLoaderAdvanced, PlusPlusLoaderSingle, PlusPlusInputNode
from .nodes_loosecontrol import ControlNetLoaderWithLoraAdvanced
from .nodes_deprecated import (LoadImagesFromDirectory, ScaledSoftUniversalWeightsDeprecated,
SoftControlNetWeightsDeprecated, CustomControlNetWeightsDeprecated,
SoftT2IAdapterWeightsDeprecated, CustomT2IAdapterWeightsDeprecated)
from .logger import logger
from .sampling import acn_sample_factory
# inject sample functions
comfy.sample.sample = acn_sample_factory(comfy.sample.sample)
comfy.sample.sample_custom = acn_sample_factory(comfy.sample.sample_custom, is_custom=True)
class ControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"control_net_name": (folder_paths.get_filename_list("controlnet"), ),
},
"optional": {
"tk_optional": ("TIMESTEP_KEYFRAME", ),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"
def load_controlnet(self, control_net_name,
tk_optional: TimestepKeyframeGroup=None,
timestep_keyframe: TimestepKeyframeGroup=None,
):
if timestep_keyframe is not None: # backwards compatibility
tk_optional = timestep_keyframe
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, tk_optional)
return (controlnet,)
class DiffControlNetLoaderAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )
},
"optional": {
"tk_optional": ("TIMESTEP_KEYFRAME", ),
"autosize": ("ACNAUTOSIZE", {"padding": 160}),
}
}
RETURN_TYPES = ("CONTROL_NET", )
FUNCTION = "load_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"
def load_controlnet(self, control_net_name, model,
tk_optional: TimestepKeyframeGroup=None,
timestep_keyframe: TimestepKeyframeGroup=None
):
if timestep_keyframe is not None: # backwards compatibility
tk_optional = timestep_keyframe
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
controlnet = load_controlnet(controlnet_path, tk_optional, model)
if is_advanced_controlnet(controlnet):
controlnet.verify_all_weights()
return (controlnet,)
class AdvancedControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"model_optional": ("MODEL",),
"vae_optional": ("VAE",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","MODEL",)
RETURN_NAMES = ("positive", "negative", "model_opt")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None, control_apply_to_uncond=False):
if strength == 0:
return (positive, negative, model_optional)
if model_optional:
model_optional = model_optional.clone()
control_hint = image.movedim(-1,1)
cnets = {}
out = []
for conditioning in [positive, negative]:
c = []
if conditioning is not None:
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
# copy, convert to advanced if needed, and set cond
c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional)
if is_advanced_controlnet(c_net):
# disarm node check
c_net.disarm()
# if model required, verify model is passed in, and if so patch it
if c_net.require_model:
if not model_optional:
raise Exception(f"Type '{type(c_net).__name__}' requires model_optional input, but got None.")
c_net.patch_model(model=model_optional)
# if vae required, verify vae is passed in
if c_net.require_vae:
# if controlnet can accept preprocced condhint latents and is the case, ignore vae requirement
if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper):
pass
elif not vae_optional:
# make sure SD3 ControlNet will get a special message instead of generic type mention
if is_sd3_advanced_controlnet:
raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.")
else:
raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.")
# apply optional parameters and overrides, if provided
if timestep_kf is not None:
c_net.set_timestep_keyframes(timestep_kf)
if latent_kf_override is not None:
c_net.latent_keyframe_override = latent_kf_override
if weights_override is not None:
c_net.weights_override = weights_override
# verify weights are compatible
c_net.verify_all_weights()
# set cond hint mask
if mask_optional is not None:
mask_optional = mask_optional.clone()
# if not in the form of a batch, make it so
if len(mask_optional.shape) < 3:
mask_optional = mask_optional.unsqueeze(0)
c_net.set_cond_hint_mask(mask_optional)
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = control_apply_to_uncond
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1], model_optional)
class AdvancedControlNetApplySingle:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
},
"optional": {
"mask_optional": ("MASK", ),
"timestep_kf": ("TIMESTEP_KEYFRAME", ),
"latent_kf_override": ("LATENT_KEYFRAME", ),
"weights_override": ("CONTROL_NET_WEIGHTS", ),
"model_optional": ("MODEL",),
"vae_optional": ("VAE",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONDITIONING","MODEL",)
RETURN_NAMES = ("CONDITIONING", "model_opt")
FUNCTION = "apply_controlnet"
CATEGORY = "Adv-ControlNet πŸ›‚πŸ…πŸ…’πŸ…"
def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent,
mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None,
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None,
weights_override: ControlWeights=None):
values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image,
strength=strength, start_percent=start_percent, end_percent=end_percent,
mask_optional=mask_optional, model_optional=model_optional, vae_optional=vae_optional,
timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override,
control_apply_to_uncond=True)
return (values[0], values[2])
# NODE MAPPING
NODE_CLASS_MAPPINGS = {
# Keyframes
"TimestepKeyframe": TimestepKeyframeNode,
"ACN_TimestepKeyframeInterpolation": TimestepKeyframeInterpolationNode,
"ACN_TimestepKeyframeFromStrengthList": TimestepKeyframeFromStrengthListNode,
"LatentKeyframe": LatentKeyframeNode,
"LatentKeyframeTiming": LatentKeyframeInterpolationNode,
"LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode,
"LatentKeyframeGroup": LatentKeyframeGroupNode,
# Conditioning
"ACN_AdvancedControlNetApply": AdvancedControlNetApply,
"ACN_AdvancedControlNetApplySingle": AdvancedControlNetApplySingle,
# Loaders
"ControlNetLoaderAdvanced": ControlNetLoaderAdvanced,
"DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced,
# Weights
"ACN_ScaledSoftControlNetWeights": ScaledSoftUniversalWeights,
"ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights,
"ACN_SoftControlNetWeightsSD15": SoftControlNetWeightsSD15,
"ACN_CustomControlNetWeightsSD15": CustomControlNetWeightsSD15,
"ACN_CustomControlNetWeightsFlux": CustomControlNetWeightsFlux,
"ACN_SoftT2IAdapterWeights": SoftT2IAdapterWeights,
"ACN_CustomT2IAdapterWeights": CustomT2IAdapterWeights,
"ACN_DefaultUniversalWeights": DefaultWeights,
# SparseCtrl
"ACN_SparseCtrlRGBPreprocessor": RgbSparseCtrlPreprocessor,
"ACN_SparseCtrlLoaderAdvanced": SparseCtrlLoaderAdvanced,
"ACN_SparseCtrlMergedLoaderAdvanced": SparseCtrlMergedLoaderAdvanced,
"ACN_SparseCtrlIndexMethodNode": SparseIndexMethodNode,
"ACN_SparseCtrlSpreadMethodNode": SparseSpreadMethodNode,
"ACN_SparseCtrlWeightExtras": SparseWeightExtras,
# ControlNet++
"ACN_ControlNet++LoaderSingle": PlusPlusLoaderSingle,
"ACN_ControlNet++LoaderAdvanced": PlusPlusLoaderAdvanced,
"ACN_ControlNet++InputNode": PlusPlusInputNode,
# Reference
"ACN_ReferencePreprocessor": ReferencePreprocessorNode,
"ACN_ReferenceControlNet": ReferenceControlNetNode,
"ACN_ReferenceControlNetFinetune": ReferenceControlFinetune,
# LOOSEControl
#"ACN_ControlNetLoaderWithLoraAdvanced": ControlNetLoaderWithLoraAdvanced,
# Deprecated
"LoadImagesFromDirectory": LoadImagesFromDirectory,
"ScaledSoftControlNetWeights": ScaledSoftUniversalWeightsDeprecated,
"SoftControlNetWeights": SoftControlNetWeightsDeprecated,
"CustomControlNetWeights": CustomControlNetWeightsDeprecated,
"SoftT2IAdapterWeights": SoftT2IAdapterWeightsDeprecated,
"CustomT2IAdapterWeights": CustomT2IAdapterWeightsDeprecated,
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Keyframes
"TimestepKeyframe": "Timestep Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_TimestepKeyframeInterpolation": "Timestep Keyframe Interp. πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_TimestepKeyframeFromStrengthList": "Timestep Keyframe From List πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframe": "Latent Keyframe πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframeTiming": "Latent Keyframe Interp. πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframeBatchedGroup": "Latent Keyframe From List πŸ›‚πŸ…πŸ…’πŸ…",
"LatentKeyframeGroup": "Latent Keyframe Group πŸ›‚πŸ…πŸ…’πŸ…",
# Conditioning
"ACN_AdvancedControlNetApply": "Apply Advanced ControlNet πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_AdvancedControlNetApplySingle": "Apply Advanced ControlNet(1) πŸ›‚πŸ…πŸ…’πŸ…",
# Loaders
"ControlNetLoaderAdvanced": "Load Advanced ControlNet Model πŸ›‚πŸ…πŸ…’πŸ…",
"DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) πŸ›‚πŸ…πŸ…’πŸ…",
# Weights
"ACN_ScaledSoftControlNetWeights": "Scaled Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_SoftControlNetWeightsSD15": "ControlNet Soft Weights [SD1.5] πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_CustomControlNetWeightsSD15": "ControlNet Custom Weights [SD1.5] πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_CustomControlNetWeightsFlux": "ControlNet Custom Weights [Flux] πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_SoftT2IAdapterWeights": "T2IAdapter Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_CustomT2IAdapterWeights": "T2IAdapter Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_DefaultUniversalWeights": "Default Weights πŸ›‚πŸ…πŸ…’πŸ…",
# SparseCtrl
"ACN_SparseCtrlRGBPreprocessor": "RGB SparseCtrl πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_SparseCtrlLoaderAdvanced": "Load SparseCtrl Model πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_SparseCtrlMergedLoaderAdvanced": "πŸ§ͺLoad Merged SparseCtrl Model πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_SparseCtrlIndexMethodNode": "SparseCtrl Index Method πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_SparseCtrlSpreadMethodNode": "SparseCtrl Spread Method πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_SparseCtrlWeightExtras": "SparseCtrl Weight Extras πŸ›‚πŸ…πŸ…’πŸ…",
# ControlNet++
"ACN_ControlNet++LoaderSingle": "Load ControlNet++ Model (Single) πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_ControlNet++LoaderAdvanced": "Load ControlNet++ Model (Multi) πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_ControlNet++InputNode": "ControlNet++ Input πŸ›‚πŸ…πŸ…’πŸ…",
# Reference
"ACN_ReferencePreprocessor": "Reference Preproccessor πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_ReferenceControlNet": "Reference ControlNet πŸ›‚πŸ…πŸ…’πŸ…",
"ACN_ReferenceControlNetFinetune": "Reference ControlNet (Finetune) πŸ›‚πŸ…πŸ…’πŸ…",
# LOOSEControl
#"ACN_ControlNetLoaderWithLoraAdvanced": "Load Adv. ControlNet Model w/ LoRA πŸ›‚πŸ…πŸ…’πŸ…",
# Deprecated
"LoadImagesFromDirectory": "🚫Load Images [DEPRECATED] πŸ›‚πŸ…πŸ…’πŸ…",
"ScaledSoftControlNetWeights": "Scaled Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"SoftControlNetWeights": "ControlNet Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"CustomControlNetWeights": "ControlNet Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
"SoftT2IAdapterWeights": "T2IAdapter Soft Weights πŸ›‚πŸ…πŸ…’πŸ…",
"CustomT2IAdapterWeights": "T2IAdapter Custom Weights πŸ›‚πŸ…πŸ…’πŸ…",
}