gartajackhats1985's picture
Upload 1633 files
681fa96 verified
raw
history blame
41.1 kB
from __future__ import division
from typing import Optional, Sequence, Union
from warnings import warn
import cv2
import numpy as np
import skimage
from custom_albumentations import random_utils
from custom_albumentations.augmentations.utils import (
MAX_VALUES_BY_DTYPE,
_maybe_process_in_chunks,
clip,
clipped,
ensure_contiguous,
is_grayscale_image,
is_rgb_image,
non_rgb_warning,
preserve_channel_dim,
preserve_shape,
)
__all__ = [
"add_fog",
"add_rain",
"add_shadow",
"add_gravel",
"add_snow",
"add_sun_flare",
"add_weighted",
"adjust_brightness_torchvision",
"adjust_contrast_torchvision",
"adjust_hue_torchvision",
"adjust_saturation_torchvision",
"brightness_contrast_adjust",
"channel_shuffle",
"clahe",
"convolve",
"downscale",
"equalize",
"fancy_pca",
"from_float",
"gamma_transform",
"gauss_noise",
"image_compression",
"invert",
"iso_noise",
"linear_transformation_rgb",
"move_tone_curve",
"multiply",
"noop",
"normalize",
"posterize",
"shift_hsv",
"shift_rgb",
"solarize",
"superpixels",
"swap_tiles_on_image",
"to_float",
"to_gray",
"gray_to_rgb",
"unsharp_mask",
]
def normalize_cv2(img, mean, denominator):
if mean.shape and len(mean) != 4 and mean.shape != img.shape:
mean = np.array(mean.tolist() + [0] * (4 - len(mean)), dtype=np.float64)
if not denominator.shape:
denominator = np.array([denominator.tolist()] * 4, dtype=np.float64)
elif len(denominator) != 4 and denominator.shape != img.shape:
denominator = np.array(denominator.tolist() + [1] * (4 - len(denominator)), dtype=np.float64)
img = np.ascontiguousarray(img.astype("float32"))
cv2.subtract(img, mean.astype(np.float64), img)
cv2.multiply(img, denominator.astype(np.float64), img)
return img
def normalize_numpy(img, mean, denominator):
img = img.astype(np.float32)
img -= mean
img *= denominator
return img
def normalize(img, mean, std, max_pixel_value=255.0):
mean = np.array(mean, dtype=np.float32)
mean *= max_pixel_value
std = np.array(std, dtype=np.float32)
std *= max_pixel_value
denominator = np.reciprocal(std, dtype=np.float32)
if img.ndim == 3 and img.shape[-1] == 3:
return normalize_cv2(img, mean, denominator)
return normalize_numpy(img, mean, denominator)
def _shift_hsv_uint8(img, hue_shift, sat_shift, val_shift):
dtype = img.dtype
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
hue, sat, val = cv2.split(img)
if hue_shift != 0:
lut_hue = np.arange(0, 256, dtype=np.int16)
lut_hue = np.mod(lut_hue + hue_shift, 180).astype(dtype)
hue = cv2.LUT(hue, lut_hue)
if sat_shift != 0:
lut_sat = np.arange(0, 256, dtype=np.int16)
lut_sat = np.clip(lut_sat + sat_shift, 0, 255).astype(dtype)
sat = cv2.LUT(sat, lut_sat)
if val_shift != 0:
lut_val = np.arange(0, 256, dtype=np.int16)
lut_val = np.clip(lut_val + val_shift, 0, 255).astype(dtype)
val = cv2.LUT(val, lut_val)
img = cv2.merge((hue, sat, val)).astype(dtype)
img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
return img
def _shift_hsv_non_uint8(img, hue_shift, sat_shift, val_shift):
dtype = img.dtype
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
hue, sat, val = cv2.split(img)
if hue_shift != 0:
hue = cv2.add(hue, hue_shift)
hue = np.mod(hue, 360) # OpenCV fails with negative values
if sat_shift != 0:
sat = clip(cv2.add(sat, sat_shift), dtype, 1.0)
if val_shift != 0:
val = clip(cv2.add(val, val_shift), dtype, 1.0)
img = cv2.merge((hue, sat, val))
img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
return img
@preserve_shape
def shift_hsv(img, hue_shift, sat_shift, val_shift):
if hue_shift == 0 and sat_shift == 0 and val_shift == 0:
return img
is_gray = is_grayscale_image(img)
if is_gray:
if hue_shift != 0 or sat_shift != 0:
hue_shift = 0
sat_shift = 0
warn(
"HueSaturationValue: hue_shift and sat_shift are not applicable to grayscale image. "
"Set them to 0 or use RGB image"
)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
if img.dtype == np.uint8:
img = _shift_hsv_uint8(img, hue_shift, sat_shift, val_shift)
else:
img = _shift_hsv_non_uint8(img, hue_shift, sat_shift, val_shift)
if is_gray:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return img
def solarize(img, threshold=128):
"""Invert all pixel values above a threshold.
Args:
img (numpy.ndarray): The image to solarize.
threshold (int): All pixels above this greyscale level are inverted.
Returns:
numpy.ndarray: Solarized image.
"""
dtype = img.dtype
max_val = MAX_VALUES_BY_DTYPE[dtype]
if dtype == np.dtype("uint8"):
lut = [(i if i < threshold else max_val - i) for i in range(max_val + 1)]
prev_shape = img.shape
img = cv2.LUT(img, np.array(lut, dtype=dtype))
if len(prev_shape) != len(img.shape):
img = np.expand_dims(img, -1)
return img
result_img = img.copy()
cond = img >= threshold
result_img[cond] = max_val - result_img[cond]
return result_img
@preserve_shape
def posterize(img, bits):
"""Reduce the number of bits for each color channel.
Args:
img (numpy.ndarray): image to posterize.
bits (int): number of high bits. Must be in range [0, 8]
Returns:
numpy.ndarray: Image with reduced color channels.
"""
bits = np.uint8(bits)
if img.dtype != np.uint8:
raise TypeError("Image must have uint8 channel type")
if np.any((bits < 0) | (bits > 8)):
raise ValueError("bits must be in range [0, 8]")
if not bits.shape or len(bits) == 1:
if bits == 0:
return np.zeros_like(img)
if bits == 8:
return img.copy()
lut = np.arange(0, 256, dtype=np.uint8)
mask = ~np.uint8(2 ** (8 - bits) - 1)
lut &= mask
return cv2.LUT(img, lut)
if not is_rgb_image(img):
raise TypeError("If bits is iterable image must be RGB")
result_img = np.empty_like(img)
for i, channel_bits in enumerate(bits):
if channel_bits == 0:
result_img[..., i] = np.zeros_like(img[..., i])
elif channel_bits == 8:
result_img[..., i] = img[..., i].copy()
else:
lut = np.arange(0, 256, dtype=np.uint8)
mask = ~np.uint8(2 ** (8 - channel_bits) - 1)
lut &= mask
result_img[..., i] = cv2.LUT(img[..., i], lut)
return result_img
def _equalize_pil(img, mask=None):
histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel()
h = [_f for _f in histogram if _f]
if len(h) <= 1:
return img.copy()
step = np.sum(h[:-1]) // 255
if not step:
return img.copy()
lut = np.empty(256, dtype=np.uint8)
n = step // 2
for i in range(256):
lut[i] = min(n // step, 255)
n += histogram[i]
return cv2.LUT(img, np.array(lut))
def _equalize_cv(img, mask=None):
if mask is None:
return cv2.equalizeHist(img)
histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel()
i = 0
for val in histogram:
if val > 0:
break
i += 1
i = min(i, 255)
total = np.sum(histogram)
if histogram[i] == total:
return np.full_like(img, i)
scale = 255.0 / (total - histogram[i])
_sum = 0
lut = np.zeros(256, dtype=np.uint8)
i += 1
for i in range(i, len(histogram)):
_sum += histogram[i]
lut[i] = clip(round(_sum * scale), np.dtype("uint8"), 255)
return cv2.LUT(img, lut)
@preserve_channel_dim
def equalize(img, mask=None, mode="cv", by_channels=True):
"""Equalize the image histogram.
Args:
img (numpy.ndarray): RGB or grayscale image.
mask (numpy.ndarray): An optional mask. If given, only the pixels selected by
the mask are included in the analysis. Maybe 1 channel or 3 channel array.
mode (str): {'cv', 'pil'}. Use OpenCV or Pillow equalization method.
by_channels (bool): If True, use equalization by channels separately,
else convert image to YCbCr representation and use equalization by `Y` channel.
Returns:
numpy.ndarray: Equalized image.
"""
if img.dtype != np.uint8:
raise TypeError("Image must have uint8 channel type")
modes = ["cv", "pil"]
if mode not in modes:
raise ValueError("Unsupported equalization mode. Supports: {}. " "Got: {}".format(modes, mode))
if mask is not None:
if is_rgb_image(mask) and is_grayscale_image(img):
raise ValueError("Wrong mask shape. Image shape: {}. " "Mask shape: {}".format(img.shape, mask.shape))
if not by_channels and not is_grayscale_image(mask):
raise ValueError(
"When by_channels=False only 1-channel mask supports. " "Mask shape: {}".format(mask.shape)
)
if mode == "pil":
function = _equalize_pil
else:
function = _equalize_cv
if mask is not None:
mask = mask.astype(np.uint8)
if is_grayscale_image(img):
return function(img, mask)
if not by_channels:
result_img = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
result_img[..., 0] = function(result_img[..., 0], mask)
return cv2.cvtColor(result_img, cv2.COLOR_YCrCb2RGB)
result_img = np.empty_like(img)
for i in range(3):
if mask is None:
_mask = None
elif is_grayscale_image(mask):
_mask = mask
else:
_mask = mask[..., i]
result_img[..., i] = function(img[..., i], _mask)
return result_img
@preserve_shape
def move_tone_curve(img, low_y, high_y):
"""Rescales the relationship between bright and dark areas of the image by manipulating its tone curve.
Args:
img (numpy.ndarray): RGB or grayscale image.
low_y (float): y-position of a Bezier control point used
to adjust the tone curve, must be in range [0, 1]
high_y (float): y-position of a Bezier control point used
to adjust image tone curve, must be in range [0, 1]
"""
input_dtype = img.dtype
if low_y < 0 or low_y > 1:
raise ValueError("low_shift must be in range [0, 1]")
if high_y < 0 or high_y > 1:
raise ValueError("high_shift must be in range [0, 1]")
if input_dtype != np.uint8:
raise ValueError("Unsupported image type {}".format(input_dtype))
t = np.linspace(0.0, 1.0, 256)
# Defines responze of a four-point bezier curve
def evaluate_bez(t):
return 3 * (1 - t) ** 2 * t * low_y + 3 * (1 - t) * t**2 * high_y + t**3
evaluate_bez = np.vectorize(evaluate_bez)
remapping = np.rint(evaluate_bez(t) * 255).astype(np.uint8)
lut_fn = _maybe_process_in_chunks(cv2.LUT, lut=remapping)
img = lut_fn(img)
return img
@clipped
def _shift_rgb_non_uint8(img, r_shift, g_shift, b_shift):
if r_shift == g_shift == b_shift:
return img + r_shift
result_img = np.empty_like(img)
shifts = [r_shift, g_shift, b_shift]
for i, shift in enumerate(shifts):
result_img[..., i] = img[..., i] + shift
return result_img
def _shift_image_uint8(img, value):
max_value = MAX_VALUES_BY_DTYPE[img.dtype]
lut = np.arange(0, max_value + 1).astype("float32")
lut += value
lut = np.clip(lut, 0, max_value).astype(img.dtype)
return cv2.LUT(img, lut)
@preserve_shape
def _shift_rgb_uint8(img, r_shift, g_shift, b_shift):
if r_shift == g_shift == b_shift:
h, w, c = img.shape
img = img.reshape([h, w * c])
return _shift_image_uint8(img, r_shift)
result_img = np.empty_like(img)
shifts = [r_shift, g_shift, b_shift]
for i, shift in enumerate(shifts):
result_img[..., i] = _shift_image_uint8(img[..., i], shift)
return result_img
def shift_rgb(img, r_shift, g_shift, b_shift):
if img.dtype == np.uint8:
return _shift_rgb_uint8(img, r_shift, g_shift, b_shift)
return _shift_rgb_non_uint8(img, r_shift, g_shift, b_shift)
@clipped
def linear_transformation_rgb(img, transformation_matrix):
result_img = cv2.transform(img, transformation_matrix)
return result_img
@preserve_channel_dim
def clahe(img, clip_limit=2.0, tile_grid_size=(8, 8)):
if img.dtype != np.uint8:
raise TypeError("clahe supports only uint8 inputs")
clahe_mat = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
if len(img.shape) == 2 or img.shape[2] == 1:
img = clahe_mat.apply(img)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
img[:, :, 0] = clahe_mat.apply(img[:, :, 0])
img = cv2.cvtColor(img, cv2.COLOR_LAB2RGB)
return img
@preserve_shape
def convolve(img, kernel):
conv_fn = _maybe_process_in_chunks(cv2.filter2D, ddepth=-1, kernel=kernel)
return conv_fn(img)
@preserve_shape
def image_compression(img, quality, image_type):
if image_type in [".jpeg", ".jpg"]:
quality_flag = cv2.IMWRITE_JPEG_QUALITY
elif image_type == ".webp":
quality_flag = cv2.IMWRITE_WEBP_QUALITY
else:
NotImplementedError("Only '.jpg' and '.webp' compression transforms are implemented. ")
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
warn(
"Image compression augmentation "
"is most effective with uint8 inputs, "
"{} is used as input.".format(input_dtype),
UserWarning,
)
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for image augmentation".format(input_dtype))
_, encoded_img = cv2.imencode(image_type, img, (int(quality_flag), quality))
img = cv2.imdecode(encoded_img, cv2.IMREAD_UNCHANGED)
if needs_float:
img = to_float(img, max_value=255)
return img
@preserve_shape
def add_snow(img, snow_point, brightness_coeff):
"""Bleaches out pixels, imitation snow.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): Image.
snow_point: Number of show points.
brightness_coeff: Brightness coefficient.
Returns:
numpy.ndarray: Image.
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
snow_point *= 127.5 # = 255 / 2
snow_point += 85 # = 255 / 3
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomSnow augmentation".format(input_dtype))
image_HLS = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
image_HLS = np.array(image_HLS, dtype=np.float32)
image_HLS[:, :, 1][image_HLS[:, :, 1] < snow_point] *= brightness_coeff
image_HLS[:, :, 1] = clip(image_HLS[:, :, 1], np.uint8, 255)
image_HLS = np.array(image_HLS, dtype=np.uint8)
image_RGB = cv2.cvtColor(image_HLS, cv2.COLOR_HLS2RGB)
if needs_float:
image_RGB = to_float(image_RGB, max_value=255)
return image_RGB
@preserve_shape
def add_rain(
img,
slant,
drop_length,
drop_width,
drop_color,
blur_value,
brightness_coefficient,
rain_drops,
):
"""
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): Image.
slant (int):
drop_length:
drop_width:
drop_color:
blur_value (int): Rainy view are blurry.
brightness_coefficient (float): Rainy days are usually shady.
rain_drops:
Returns:
numpy.ndarray: Image.
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomRain augmentation".format(input_dtype))
image = img.copy()
for rain_drop_x0, rain_drop_y0 in rain_drops:
rain_drop_x1 = rain_drop_x0 + slant
rain_drop_y1 = rain_drop_y0 + drop_length
cv2.line(
image,
(rain_drop_x0, rain_drop_y0),
(rain_drop_x1, rain_drop_y1),
drop_color,
drop_width,
)
image = cv2.blur(image, (blur_value, blur_value)) # rainy view are blurry
image_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32)
image_hsv[:, :, 2] *= brightness_coefficient
image_rgb = cv2.cvtColor(image_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@preserve_shape
def add_fog(img, fog_coef, alpha_coef, haze_list):
"""Add fog to the image.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): Image.
fog_coef (float): Fog coefficient.
alpha_coef (float): Alpha coefficient.
haze_list (list):
Returns:
numpy.ndarray: Image.
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomFog augmentation".format(input_dtype))
width = img.shape[1]
hw = max(int(width // 3 * fog_coef), 10)
for haze_points in haze_list:
x, y = haze_points
overlay = img.copy()
output = img.copy()
alpha = alpha_coef * fog_coef
rad = hw // 2
point = (x + hw // 2, y + hw // 2)
cv2.circle(overlay, point, int(rad), (255, 255, 255), -1)
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
img = output.copy()
image_rgb = cv2.blur(img, (hw // 10, hw // 10))
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@preserve_shape
def add_sun_flare(img, flare_center_x, flare_center_y, src_radius, src_color, circles):
"""Add sun flare.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray):
flare_center_x (float):
flare_center_y (float):
src_radius:
src_color (int, int, int):
circles (list):
Returns:
numpy.ndarray:
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomSunFlareaugmentation".format(input_dtype))
overlay = img.copy()
output = img.copy()
for alpha, (x, y), rad3, (r_color, g_color, b_color) in circles:
cv2.circle(overlay, (x, y), rad3, (r_color, g_color, b_color), -1)
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
point = (int(flare_center_x), int(flare_center_y))
overlay = output.copy()
num_times = src_radius // 10
alpha = np.linspace(0.0, 1, num=num_times)
rad = np.linspace(1, src_radius, num=num_times)
for i in range(num_times):
cv2.circle(overlay, point, int(rad[i]), src_color, -1)
alp = alpha[num_times - i - 1] * alpha[num_times - i - 1] * alpha[num_times - i - 1]
cv2.addWeighted(overlay, alp, output, 1 - alp, 0, output)
image_rgb = output
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@ensure_contiguous
@preserve_shape
def add_shadow(img, vertices_list):
"""Add shadows to the image.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray):
vertices_list (list):
Returns:
numpy.ndarray:
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for RandomShadow augmentation".format(input_dtype))
image_hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
mask = np.zeros_like(img)
# adding all shadow polygons on empty mask, single 255 denotes only red channel
for vertices in vertices_list:
cv2.fillPoly(mask, vertices, 255)
# if red channel is hot, image's "Lightness" channel's brightness is lowered
red_max_value_ind = mask[:, :, 0] == 255
image_hls[:, :, 1][red_max_value_ind] = image_hls[:, :, 1][red_max_value_ind] * 0.5
image_rgb = cv2.cvtColor(image_hls, cv2.COLOR_HLS2RGB)
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
@ensure_contiguous
@preserve_shape
def add_gravel(img: np.ndarray, gravels: list):
"""Add gravel to the image.
From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
Args:
img (numpy.ndarray): image to add gravel to
gravels (list): list of gravel parameters. (float, float, float, float):
(top-left x, top-left y, bottom-right x, bottom right y)
Returns:
numpy.ndarray:
"""
non_rgb_warning(img)
input_dtype = img.dtype
needs_float = False
if input_dtype == np.float32:
img = from_float(img, dtype=np.dtype("uint8"))
needs_float = True
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for AddGravel augmentation".format(input_dtype))
image_hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
for gravel in gravels:
y1, y2, x1, x2, sat = gravel
image_hls[x1:x2, y1:y2, 1] = sat
image_rgb = cv2.cvtColor(image_hls, cv2.COLOR_HLS2RGB)
if needs_float:
image_rgb = to_float(image_rgb, max_value=255)
return image_rgb
def invert(img: np.ndarray) -> np.ndarray:
# Supports all the valid dtypes
# clips the img to avoid unexpected behaviour.
return MAX_VALUES_BY_DTYPE[img.dtype] - img
def channel_shuffle(img, channels_shuffled):
img = img[..., channels_shuffled]
return img
@preserve_shape
def gamma_transform(img, gamma):
if img.dtype == np.uint8:
table = (np.arange(0, 256.0 / 255, 1.0 / 255) ** gamma) * 255
img = cv2.LUT(img, table.astype(np.uint8))
else:
img = np.power(img, gamma)
return img
@clipped
def gauss_noise(image, gauss):
image = image.astype("float32")
return image + gauss
@clipped
def _brightness_contrast_adjust_non_uint(img, alpha=1, beta=0, beta_by_max=False):
dtype = img.dtype
img = img.astype("float32")
if alpha != 1:
img *= alpha
if beta != 0:
if beta_by_max:
max_value = MAX_VALUES_BY_DTYPE[dtype]
img += beta * max_value
else:
img += beta * np.mean(img)
return img
@preserve_shape
def _brightness_contrast_adjust_uint(img, alpha=1, beta=0, beta_by_max=False):
dtype = np.dtype("uint8")
max_value = MAX_VALUES_BY_DTYPE[dtype]
lut = np.arange(0, max_value + 1).astype("float32")
if alpha != 1:
lut *= alpha
if beta != 0:
if beta_by_max:
lut += beta * max_value
else:
lut += (alpha * beta) * np.mean(img)
lut = np.clip(lut, 0, max_value).astype(dtype)
img = cv2.LUT(img, lut)
return img
def brightness_contrast_adjust(img, alpha=1, beta=0, beta_by_max=False):
if img.dtype == np.uint8:
return _brightness_contrast_adjust_uint(img, alpha, beta, beta_by_max)
return _brightness_contrast_adjust_non_uint(img, alpha, beta, beta_by_max)
@clipped
def iso_noise(image, color_shift=0.05, intensity=0.5, random_state=None, **kwargs):
"""
Apply poisson noise to image to simulate camera sensor noise.
Args:
image (numpy.ndarray): Input image, currently, only RGB, uint8 images are supported.
color_shift (float):
intensity (float): Multiplication factor for noise values. Values of ~0.5 are produce noticeable,
yet acceptable level of noise.
random_state:
**kwargs:
Returns:
numpy.ndarray: Noised image
"""
if image.dtype != np.uint8:
raise TypeError("Image must have uint8 channel type")
if not is_rgb_image(image):
raise TypeError("Image must be RGB")
one_over_255 = float(1.0 / 255.0)
image = np.multiply(image, one_over_255, dtype=np.float32)
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
_, stddev = cv2.meanStdDev(hls)
luminance_noise = random_utils.poisson(stddev[1] * intensity * 255, size=hls.shape[:2], random_state=random_state)
color_noise = random_utils.normal(0, color_shift * 360 * intensity, size=hls.shape[:2], random_state=random_state)
hue = hls[..., 0]
hue += color_noise
hue[hue < 0] += 360
hue[hue > 360] -= 360
luminance = hls[..., 1]
luminance += (luminance_noise / 255) * (1.0 - luminance)
image = cv2.cvtColor(hls, cv2.COLOR_HLS2RGB) * 255
return image.astype(np.uint8)
def to_gray(img):
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
def gray_to_rgb(img):
return cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
@preserve_shape
def downscale(img, scale, down_interpolation=cv2.INTER_AREA, up_interpolation=cv2.INTER_LINEAR):
h, w = img.shape[:2]
need_cast = (
up_interpolation != cv2.INTER_NEAREST or down_interpolation != cv2.INTER_NEAREST
) and img.dtype == np.uint8
if need_cast:
img = to_float(img)
downscaled = cv2.resize(img, None, fx=scale, fy=scale, interpolation=down_interpolation)
upscaled = cv2.resize(downscaled, (w, h), interpolation=up_interpolation)
if need_cast:
upscaled = from_float(np.clip(upscaled, 0, 1), dtype=np.dtype("uint8"))
return upscaled
def to_float(img, max_value=None):
if max_value is None:
try:
max_value = MAX_VALUES_BY_DTYPE[img.dtype]
except KeyError:
raise RuntimeError(
"Can't infer the maximum value for dtype {}. You need to specify the maximum value manually by "
"passing the max_value argument".format(img.dtype)
)
return img.astype("float32") / max_value
def from_float(img, dtype, max_value=None):
if max_value is None:
try:
max_value = MAX_VALUES_BY_DTYPE[dtype]
except KeyError:
raise RuntimeError(
"Can't infer the maximum value for dtype {}. You need to specify the maximum value manually by "
"passing the max_value argument".format(dtype)
)
return (img * max_value).astype(dtype)
def noop(input_obj, **params): # skipcq: PYL-W0613
return input_obj
def swap_tiles_on_image(image, tiles):
"""
Swap tiles on image.
Args:
image (np.ndarray): Input image.
tiles (np.ndarray): array of tuples(
current_left_up_corner_row, current_left_up_corner_col,
old_left_up_corner_row, old_left_up_corner_col,
height_tile, width_tile)
Returns:
np.ndarray: Output image.
"""
new_image = image.copy()
for tile in tiles:
new_image[tile[0] : tile[0] + tile[4], tile[1] : tile[1] + tile[5]] = image[
tile[2] : tile[2] + tile[4], tile[3] : tile[3] + tile[5]
]
return new_image
@clipped
def _multiply_uint8(img, multiplier):
img = img.astype(np.float32)
return np.multiply(img, multiplier)
@preserve_shape
def _multiply_uint8_optimized(img, multiplier):
if is_grayscale_image(img) or len(multiplier) == 1:
multiplier = multiplier[0]
lut = np.arange(0, 256, dtype=np.float32)
lut *= multiplier
lut = clip(lut, np.uint8, MAX_VALUES_BY_DTYPE[img.dtype])
func = _maybe_process_in_chunks(cv2.LUT, lut=lut)
return func(img)
channels = img.shape[-1]
lut = [np.arange(0, 256, dtype=np.float32)] * channels
lut = np.stack(lut, axis=-1)
lut *= multiplier
lut = clip(lut, np.uint8, MAX_VALUES_BY_DTYPE[img.dtype])
images = []
for i in range(channels):
func = _maybe_process_in_chunks(cv2.LUT, lut=lut[:, i])
images.append(func(img[:, :, i]))
return np.stack(images, axis=-1)
@clipped
def _multiply_non_uint8(img, multiplier):
return img * multiplier
def multiply(img, multiplier):
"""
Args:
img (numpy.ndarray): Image.
multiplier (numpy.ndarray): Multiplier coefficient.
Returns:
numpy.ndarray: Image multiplied by `multiplier` coefficient.
"""
if img.dtype == np.uint8:
if len(multiplier.shape) == 1:
return _multiply_uint8_optimized(img, multiplier)
return _multiply_uint8(img, multiplier)
return _multiply_non_uint8(img, multiplier)
def bbox_from_mask(mask):
"""Create bounding box from binary mask (fast version)
Args:
mask (numpy.ndarray): binary mask.
Returns:
tuple: A bounding box tuple `(x_min, y_min, x_max, y_max)`.
"""
rows = np.any(mask, axis=1)
if not rows.any():
return -1, -1, -1, -1
cols = np.any(mask, axis=0)
y_min, y_max = np.where(rows)[0][[0, -1]]
x_min, x_max = np.where(cols)[0][[0, -1]]
return x_min, y_min, x_max + 1, y_max + 1
def mask_from_bbox(img, bbox):
"""Create binary mask from bounding box
Args:
img (numpy.ndarray): input image
bbox: A bounding box tuple `(x_min, y_min, x_max, y_max)`
Returns:
mask (numpy.ndarray): binary mask
"""
mask = np.zeros(img.shape[:2], dtype=np.uint8)
x_min, y_min, x_max, y_max = bbox
mask[y_min:y_max, x_min:x_max] = 1
return mask
def fancy_pca(img, alpha=0.1):
"""Perform 'Fancy PCA' augmentation from:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
Args:
img (numpy.ndarray): numpy array with (h, w, rgb) shape, as ints between 0-255
alpha (float): how much to perturb/scale the eigen vecs and vals
the paper used std=0.1
Returns:
numpy.ndarray: numpy image-like array as uint8 range(0, 255)
"""
if not is_rgb_image(img) or img.dtype != np.uint8:
raise TypeError("Image must be RGB image in uint8 format.")
orig_img = img.astype(float).copy()
img = img / 255.0 # rescale to 0 to 1 range
# flatten image to columns of RGB
img_rs = img.reshape(-1, 3)
# img_rs shape (640000, 3)
# center mean
img_centered = img_rs - np.mean(img_rs, axis=0)
# paper says 3x3 covariance matrix
img_cov = np.cov(img_centered, rowvar=False)
# eigen values and eigen vectors
eig_vals, eig_vecs = np.linalg.eigh(img_cov)
# sort values and vector
sort_perm = eig_vals[::-1].argsort()
eig_vals[::-1].sort()
eig_vecs = eig_vecs[:, sort_perm]
# get [p1, p2, p3]
m1 = np.column_stack((eig_vecs))
# get 3x1 matrix of eigen values multiplied by random variable draw from normal
# distribution with mean of 0 and standard deviation of 0.1
m2 = np.zeros((3, 1))
# according to the paper alpha should only be draw once per augmentation (not once per channel)
# alpha = np.random.normal(0, alpha_std)
# broad cast to speed things up
m2[:, 0] = alpha * eig_vals[:]
# this is the vector that we're going to add to each pixel in a moment
add_vect = np.matrix(m1) * np.matrix(m2)
for idx in range(3): # RGB
orig_img[..., idx] += add_vect[idx] * 255
# for image processing it was found that working with float 0.0 to 1.0
# was easier than integers between 0-255
# orig_img /= 255.0
orig_img = np.clip(orig_img, 0.0, 255.0)
# orig_img *= 255
orig_img = orig_img.astype(np.uint8)
return orig_img
def _adjust_brightness_torchvision_uint8(img, factor):
lut = np.arange(0, 256) * factor
lut = np.clip(lut, 0, 255).astype(np.uint8)
return cv2.LUT(img, lut)
@preserve_shape
def adjust_brightness_torchvision(img, factor):
if factor == 0:
return np.zeros_like(img)
elif factor == 1:
return img
if img.dtype == np.uint8:
return _adjust_brightness_torchvision_uint8(img, factor)
return clip(img * factor, img.dtype, MAX_VALUES_BY_DTYPE[img.dtype])
def _adjust_contrast_torchvision_uint8(img, factor, mean):
lut = np.arange(0, 256) * factor
lut = lut + mean * (1 - factor)
lut = clip(lut, img.dtype, 255)
return cv2.LUT(img, lut)
@preserve_shape
def adjust_contrast_torchvision(img, factor):
if factor == 1:
return img
if is_grayscale_image(img):
mean = img.mean()
else:
mean = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).mean()
if factor == 0:
if img.dtype != np.float32:
mean = int(mean + 0.5)
return np.full_like(img, mean, dtype=img.dtype)
if img.dtype == np.uint8:
return _adjust_contrast_torchvision_uint8(img, factor, mean)
return clip(
img.astype(np.float32) * factor + mean * (1 - factor),
img.dtype,
MAX_VALUES_BY_DTYPE[img.dtype],
)
@preserve_shape
def adjust_saturation_torchvision(img, factor, gamma=0):
if factor == 1:
return img
if is_grayscale_image(img):
gray = img
return gray
else:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
if factor == 0:
return gray
result = cv2.addWeighted(img, factor, gray, 1 - factor, gamma=gamma)
if img.dtype == np.uint8:
return result
# OpenCV does not clip values for float dtype
return clip(result, img.dtype, MAX_VALUES_BY_DTYPE[img.dtype])
def _adjust_hue_torchvision_uint8(img, factor):
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
lut = np.arange(0, 256, dtype=np.int16)
lut = np.mod(lut + 180 * factor, 180).astype(np.uint8)
img[..., 0] = cv2.LUT(img[..., 0], lut)
return cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
def adjust_hue_torchvision(img, factor):
if is_grayscale_image(img):
return img
if factor == 0:
return img
if img.dtype == np.uint8:
return _adjust_hue_torchvision_uint8(img, factor)
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
img[..., 0] = np.mod(img[..., 0] + factor * 360, 360)
return cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
@preserve_shape
def superpixels(
image: np.ndarray, n_segments: int, replace_samples: Sequence[bool], max_size: Optional[int], interpolation: int
) -> np.ndarray:
if not np.any(replace_samples):
return image
orig_shape = image.shape
if max_size is not None:
size = max(image.shape[:2])
if size > max_size:
scale = max_size / size
height, width = image.shape[:2]
new_height, new_width = int(height * scale), int(width * scale)
resize_fn = _maybe_process_in_chunks(cv2.resize, dsize=(new_width, new_height), interpolation=interpolation)
image = resize_fn(image)
segments = skimage.segmentation.slic(
image, n_segments=n_segments, compactness=10, channel_axis=-1 if image.ndim > 2 else None
)
min_value = 0
max_value = MAX_VALUES_BY_DTYPE[image.dtype]
image = np.copy(image)
if image.ndim == 2:
image = image.reshape(*image.shape, 1)
nb_channels = image.shape[2]
for c in range(nb_channels):
# segments+1 here because otherwise regionprops always misses the last label
regions = skimage.measure.regionprops(segments + 1, intensity_image=image[..., c])
for ridx, region in enumerate(regions):
# with mod here, because slic can sometimes create more superpixel than requested.
# replace_samples then does not have enough values, so we just start over with the first one again.
if replace_samples[ridx % len(replace_samples)]:
mean_intensity = region.mean_intensity
image_sp_c = image[..., c]
if image_sp_c.dtype.kind in ["i", "u", "b"]:
# After rounding the value can end up slightly outside of the value_range. Hence, we need to clip.
# We do clip via min(max(...)) instead of np.clip because
# the latter one does not seem to keep dtypes for dtypes with large itemsizes (e.g. uint64).
value: Union[int, float]
value = int(np.round(mean_intensity))
value = min(max(value, min_value), max_value)
else:
value = mean_intensity
image_sp_c[segments == ridx] = value
if orig_shape != image.shape:
resize_fn = _maybe_process_in_chunks(
cv2.resize, dsize=(orig_shape[1], orig_shape[0]), interpolation=interpolation
)
image = resize_fn(image)
return image
@clipped
def add_weighted(img1, alpha, img2, beta):
return img1.astype(float) * alpha + img2.astype(float) * beta
@clipped
@preserve_shape
def unsharp_mask(image: np.ndarray, ksize: int, sigma: float = 0.0, alpha: float = 0.2, threshold: int = 10):
blur_fn = _maybe_process_in_chunks(cv2.GaussianBlur, ksize=(ksize, ksize), sigmaX=sigma)
input_dtype = image.dtype
if input_dtype == np.uint8:
image = to_float(image)
elif input_dtype not in (np.uint8, np.float32):
raise ValueError("Unexpected dtype {} for UnsharpMask augmentation".format(input_dtype))
blur = blur_fn(image)
residual = image - blur
# Do not sharpen noise
mask = np.abs(residual) * 255 > threshold
mask = mask.astype("float32")
sharp = image + alpha * residual
# Avoid color noise artefacts.
sharp = np.clip(sharp, 0, 1)
soft_mask = blur_fn(mask)
output = soft_mask * sharp + (1 - soft_mask) * image
return from_float(output, dtype=input_dtype)
@preserve_shape
def pixel_dropout(image: np.ndarray, drop_mask: np.ndarray, drop_value: Union[float, Sequence[float]]) -> np.ndarray:
if isinstance(drop_value, (int, float)) and drop_value == 0:
drop_values = np.zeros_like(image)
else:
drop_values = np.full_like(image, drop_value) # type: ignore
return np.where(drop_mask, drop_values, image)
@clipped
@preserve_shape
def spatter(
img: np.ndarray,
non_mud: Optional[np.ndarray],
mud: Optional[np.ndarray],
rain: Optional[np.ndarray],
mode: str,
) -> np.ndarray:
non_rgb_warning(img)
coef = MAX_VALUES_BY_DTYPE[img.dtype]
img = img.astype(np.float32) * (1 / coef)
if mode == "rain":
assert rain is not None
img = img + rain
elif mode == "mud":
assert non_mud is not None and mud is not None
img = img * non_mud + mud
else:
raise ValueError("Unsupported spatter mode: " + str(mode))
return img * 255