Spaces:
Running
Running
""" Pooling-based Vision Transformer (PiT) in PyTorch | |
A PyTorch implement of Pooling-based Vision Transformers as described in | |
'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302 | |
This code was adapted from the original version at https://github.com/naver-ai/pit, original copyright below. | |
Modifications for timm by / Copyright 2020 Ross Wightman | |
""" | |
# PiT | |
# Copyright 2021-present NAVER Corp. | |
# Apache License v2.0 | |
import math | |
import re | |
from copy import deepcopy | |
from functools import partial | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import trunc_normal_, to_2tuple | |
from .registry import register_model | |
from .vision_transformer import Block | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.conv', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# deit models (FB weights) | |
'pit_ti_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_730.pth'), | |
'pit_xs_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_781.pth'), | |
'pit_s_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_809.pth'), | |
'pit_b_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_820.pth'), | |
'pit_ti_distilled_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_distill_746.pth', | |
classifier=('head', 'head_dist')), | |
'pit_xs_distilled_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_distill_791.pth', | |
classifier=('head', 'head_dist')), | |
'pit_s_distilled_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_distill_819.pth', | |
classifier=('head', 'head_dist')), | |
'pit_b_distilled_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_distill_840.pth', | |
classifier=('head', 'head_dist')), | |
} | |
class SequentialTuple(nn.Sequential): | |
""" This module exists to work around torchscript typing issues list -> list""" | |
def __init__(self, *args): | |
super(SequentialTuple, self).__init__(*args) | |
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: | |
for module in self: | |
x = module(x) | |
return x | |
class Transformer(nn.Module): | |
def __init__( | |
self, base_dim, depth, heads, mlp_ratio, pool=None, drop_rate=.0, attn_drop_rate=.0, drop_path_prob=None): | |
super(Transformer, self).__init__() | |
self.layers = nn.ModuleList([]) | |
embed_dim = base_dim * heads | |
self.blocks = nn.Sequential(*[ | |
Block( | |
dim=embed_dim, | |
num_heads=heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=True, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=drop_path_prob[i], | |
norm_layer=partial(nn.LayerNorm, eps=1e-6) | |
) | |
for i in range(depth)]) | |
self.pool = pool | |
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: | |
x, cls_tokens = x | |
B, C, H, W = x.shape | |
token_length = cls_tokens.shape[1] | |
x = x.flatten(2).transpose(1, 2) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.blocks(x) | |
cls_tokens = x[:, :token_length] | |
x = x[:, token_length:] | |
x = x.transpose(1, 2).reshape(B, C, H, W) | |
if self.pool is not None: | |
x, cls_tokens = self.pool(x, cls_tokens) | |
return x, cls_tokens | |
class ConvHeadPooling(nn.Module): | |
def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): | |
super(ConvHeadPooling, self).__init__() | |
self.conv = nn.Conv2d( | |
in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride, | |
padding_mode=padding_mode, groups=in_feature) | |
self.fc = nn.Linear(in_feature, out_feature) | |
def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]: | |
x = self.conv(x) | |
cls_token = self.fc(cls_token) | |
return x, cls_token | |
class ConvEmbedding(nn.Module): | |
def __init__(self, in_channels, out_channels, patch_size, stride, padding): | |
super(ConvEmbedding, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels, out_channels, kernel_size=patch_size, stride=stride, padding=padding, bias=True) | |
def forward(self, x): | |
x = self.conv(x) | |
return x | |
class PoolingVisionTransformer(nn.Module): | |
""" Pooling-based Vision Transformer | |
A PyTorch implement of 'Rethinking Spatial Dimensions of Vision Transformers' | |
- https://arxiv.org/abs/2103.16302 | |
""" | |
def __init__( | |
self, img_size, patch_size, stride, base_dims, depth, heads, | |
mlp_ratio, num_classes=1000, in_chans=3, global_pool='token', | |
distilled=False, attn_drop_rate=.0, drop_rate=.0, drop_path_rate=.0): | |
super(PoolingVisionTransformer, self).__init__() | |
assert global_pool in ('token',) | |
padding = 0 | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
height = math.floor((img_size[0] + 2 * padding - patch_size[0]) / stride + 1) | |
width = math.floor((img_size[1] + 2 * padding - patch_size[1]) / stride + 1) | |
self.base_dims = base_dims | |
self.heads = heads | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_tokens = 2 if distilled else 1 | |
self.patch_size = patch_size | |
self.pos_embed = nn.Parameter(torch.randn(1, base_dims[0] * heads[0], height, width)) | |
self.patch_embed = ConvEmbedding(in_chans, base_dims[0] * heads[0], patch_size, stride, padding) | |
self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, base_dims[0] * heads[0])) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
transformers = [] | |
# stochastic depth decay rule | |
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)] | |
for stage in range(len(depth)): | |
pool = None | |
if stage < len(heads) - 1: | |
pool = ConvHeadPooling( | |
base_dims[stage] * heads[stage], base_dims[stage + 1] * heads[stage + 1], stride=2) | |
transformers += [Transformer( | |
base_dims[stage], depth[stage], heads[stage], mlp_ratio, pool=pool, | |
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_prob=dpr[stage]) | |
] | |
self.transformers = SequentialTuple(*transformers) | |
self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6) | |
self.num_features = self.embed_dim = base_dims[-1] * heads[-1] | |
# Classifier head | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
self.head_dist = None | |
if distilled: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
self.distilled_training = False # must set this True to train w/ distillation token | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def set_distilled_training(self, enable=True): | |
self.distilled_training = enable | |
def set_grad_checkpointing(self, enable=True): | |
assert not enable, 'gradient checkpointing not supported' | |
def get_classifier(self): | |
if self.head_dist is not None: | |
return self.head, self.head_dist | |
else: | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=None): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if self.head_dist is not None: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = self.pos_drop(x + self.pos_embed) | |
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) | |
x, cls_tokens = self.transformers((x, cls_tokens)) | |
cls_tokens = self.norm(cls_tokens) | |
return cls_tokens | |
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: | |
if self.head_dist is not None: | |
assert self.global_pool == 'token' | |
x, x_dist = x[:, 0], x[:, 1] | |
if not pre_logits: | |
x = self.head(x) | |
x_dist = self.head_dist(x_dist) | |
if self.distilled_training and self.training and not torch.jit.is_scripting(): | |
# only return separate classification predictions when training in distilled mode | |
return x, x_dist | |
else: | |
# during standard train / finetune, inference average the classifier predictions | |
return (x + x_dist) / 2 | |
else: | |
if self.global_pool == 'token': | |
x = x[:, 0] | |
if not pre_logits: | |
x = self.head(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def checkpoint_filter_fn(state_dict, model): | |
""" preprocess checkpoints """ | |
out_dict = {} | |
p_blocks = re.compile(r'pools\.(\d)\.') | |
for k, v in state_dict.items(): | |
# FIXME need to update resize for PiT impl | |
# if k == 'pos_embed' and v.shape != model.pos_embed.shape: | |
# # To resize pos embedding when using model at different size from pretrained weights | |
# v = resize_pos_embed(v, model.pos_embed) | |
k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1))}.pool.', k) | |
out_dict[k] = v | |
return out_dict | |
def _create_pit(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg( | |
PoolingVisionTransformer, variant, pretrained, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
**kwargs) | |
return model | |
def pit_b_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=14, | |
stride=7, | |
base_dims=[64, 64, 64], | |
depth=[3, 6, 4], | |
heads=[4, 8, 16], | |
mlp_ratio=4, | |
**kwargs | |
) | |
return _create_pit('pit_b_224', pretrained, **model_kwargs) | |
def pit_s_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, | |
stride=8, | |
base_dims=[48, 48, 48], | |
depth=[2, 6, 4], | |
heads=[3, 6, 12], | |
mlp_ratio=4, | |
**kwargs | |
) | |
return _create_pit('pit_s_224', pretrained, **model_kwargs) | |
def pit_xs_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, | |
stride=8, | |
base_dims=[48, 48, 48], | |
depth=[2, 6, 4], | |
heads=[2, 4, 8], | |
mlp_ratio=4, | |
**kwargs | |
) | |
return _create_pit('pit_xs_224', pretrained, **model_kwargs) | |
def pit_ti_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, | |
stride=8, | |
base_dims=[32, 32, 32], | |
depth=[2, 6, 4], | |
heads=[2, 4, 8], | |
mlp_ratio=4, | |
**kwargs | |
) | |
return _create_pit('pit_ti_224', pretrained, **model_kwargs) | |
def pit_b_distilled_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=14, | |
stride=7, | |
base_dims=[64, 64, 64], | |
depth=[3, 6, 4], | |
heads=[4, 8, 16], | |
mlp_ratio=4, | |
distilled=True, | |
**kwargs | |
) | |
return _create_pit('pit_b_distilled_224', pretrained, **model_kwargs) | |
def pit_s_distilled_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, | |
stride=8, | |
base_dims=[48, 48, 48], | |
depth=[2, 6, 4], | |
heads=[3, 6, 12], | |
mlp_ratio=4, | |
distilled=True, | |
**kwargs | |
) | |
return _create_pit('pit_s_distilled_224', pretrained, **model_kwargs) | |
def pit_xs_distilled_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, | |
stride=8, | |
base_dims=[48, 48, 48], | |
depth=[2, 6, 4], | |
heads=[2, 4, 8], | |
mlp_ratio=4, | |
distilled=True, | |
**kwargs | |
) | |
return _create_pit('pit_xs_distilled_224', pretrained, **model_kwargs) | |
def pit_ti_distilled_224(pretrained, **kwargs): | |
model_kwargs = dict( | |
patch_size=16, | |
stride=8, | |
base_dims=[32, 32, 32], | |
depth=[2, 6, 4], | |
heads=[2, 4, 8], | |
mlp_ratio=4, | |
distilled=True, | |
**kwargs | |
) | |
return _create_pit('pit_ti_distilled_224', pretrained, **model_kwargs) |