File size: 4,230 Bytes
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d48283
 
 
870813f
9d48283
 
 
 
 
 
870813f
 
 
9d48283
 
 
 
 
 
 
 
5263bd3
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d967d
 
870813f
 
63d967d
723da6d
 
 
 
 
 
 
 
 
870813f
723da6d
 
9d48283
 
 
 
 
 
 
723da6d
9d48283
 
723da6d
 
9d48283
723da6d
870813f
 
723da6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263bd3
 
 
723da6d
 
 
 
 
 
5263bd3
870813f
5263bd3
870813f
723da6d
870813f
 
5263bd3
 
723da6d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """Convert sequence to k-mer frequency vector"""
    # Generate all possible k-mers
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}

    # Initialize vector
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    # Count k-mers
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    # Convert to frequencies
    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers

    return vec

def parse_fasta(text):
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def predict(file_obj):
    if file_obj is None:
        return "Please upload a FASTA file"
    
    # Read the file content
    try:
        # Handle both string and file object cases
        if isinstance(file_obj, str):
            text = file_obj
        else:
            text = file_obj.decode('utf-8')
    except Exception as e:
        return f"Error reading file: {str(e)}"

    # Load model and scaler
    try:
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        model = VirusClassifier(256).to(device)  # k=4 -> 4^4 = 256 features
        
        # Load model with explicit map_location
        state_dict = torch.load('model.pt', map_location=device)
        model.load_state_dict(state_dict)
        
        # Load scaler
        scaler = joblib.load('scaler.pkl')
        
        # Set model to evaluation mode
        model.eval()
    except Exception as e:
        return f"Error loading model: {str(e)}\nFull traceback: {str(e.__traceback__)}"

    # Get predictions
    results = []
    try:
        sequences = parse_fasta(text)
        for header, seq in sequences:
            # Get k-mer vector
            kmer_vector = sequence_to_kmer_vector(seq)
            kmer_vector = scaler.transform(kmer_vector.reshape(1, -1))
            
            # Predict
            with torch.no_grad():
                output = model(torch.FloatTensor(kmer_vector).to(device))
                probs = torch.softmax(output, dim=1)
            
            # Format results
            pred_class = 1 if probs[0][1] > probs[0][0] else 0
            pred_label = 'human' if pred_class == 1 else 'non-human'
            result = f"""Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}"""
            results.append(result)
    except Exception as e:
        return f"Error processing sequences: {str(e)}"

    return "\n\n".join(results)

# Create the interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.File(label="Upload FASTA file", type="binary"),
    outputs=gr.Textbox(label="Results"),
    title="Virus Host Classifier"
)

# Launch the interface
if __name__ == "__main__":
    iface.launch()  # Remove share=True for Hugging Face Spaces