Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,685 Bytes
00710e8 88b9835 67d69a3 632c209 ad85111 75f2ed4 57a96a1 67d69a3 a84e446 75f2ed4 00710e8 88b9835 f04906e caf9141 21eda87 396f6f7 67d69a3 396f6f7 caf9141 57a96a1 75f2ed4 57a96a1 88b9835 67d69a3 f5c8b45 75f2ed4 57a96a1 f5c8b45 75f2ed4 88b9835 75f2ed4 3ef9484 57a96a1 75f2ed4 88b9835 57a96a1 9edbc68 75f2ed4 424869b ab16048 57a96a1 f5c8b45 ab16048 01dd5e7 ab16048 caf9141 f04906e 57a96a1 424869b 57a96a1 ab16048 caf9141 ab16048 caf9141 ab16048 de50edd 975300c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import time
import datetime
from tqdm import tqdm
import spaces
import torch
import torch.optim as optim
import gradio as gr
from utils import preprocess_img, preprocess_img_from_path, postprocess_img
from vgg19 import VGG_19
if torch.cuda.is_available(): device = 'cuda'
elif torch.backends.mps.is_available(): device = 'mps'
else: device = 'cpu'
print('DEVICE:', device)
model = VGG_19().to(device)
for param in model.parameters():
param.requires_grad = False
style_files = os.listdir('./style_images')
style_options = {' '.join(style_file.split('.')[0].split('_')): f'./style_images/{style_file}' for style_file in style_files}
@spaces.GPU(duration=20)
def inference(content_image, style_image, style_strength, output_quality, progress=gr.Progress(track_tqdm=True)):
yield None
print('-'*15)
print('DATETIME:', datetime.datetime.now())
print('STYLE:', style_image)
img_size = 1024 if output_quality else 512
content_img, original_size = preprocess_img(content_image, img_size)
content_img = content_img.to(device)
style_img = preprocess_img_from_path(style_options[style_image], img_size)[0].to(device)
print('CONTENT IMG SIZE:', original_size)
print('STYLE STRENGTH:', style_strength)
print('HIGH QUALITY:', output_quality)
iters = 1
# learning rate determined by input
lr = 0.001 + (0.099 / 99) * (style_strength - 1)
alpha = 1
beta = 1
st = time.time()
generated_img = content_img.clone().requires_grad_(True)
optimizer = optim.Adam([generated_img], lr=lr)
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
generated_features = model(generated_img)
content_features = model(content_img)
style_features = model(style_img)
content_loss = 0
style_loss = 0
for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):
batch_size, n_feature_maps, height, width = generated_feature.size()
content_loss += (torch.mean((generated_feature - content_feature) ** 2))
G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
E_l = ((G - A) ** 2)
w_l = 1/5
style_loss += torch.mean(w_l * E_l)
total_loss = alpha * content_loss + beta * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
et = time.time()
print('TIME TAKEN:', et-st)
yield postprocess_img(generated_img, original_size)
def set_slider(value):
return gr.update(value=value)
css = """
#container {
margin: 0 auto;
max-width: 550px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1 style='text-align: center; padding: 10px'>🖼️ Neural Style Transfer</h1>")
with gr.Column(elem_id='container'):
content_and_output = gr.Image(show_label=False, type='pil', sources=['upload'], format='jpg', show_download_button=False)
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
with gr.Accordion('Adjustments', open=False):
with gr.Group():
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=100, step=1, value=50)
with gr.Row():
low_button = gr.Button('Low').click(fn=lambda: set_slider(10), outputs=[style_strength_slider])
medium_button = gr.Button('Medium').click(fn=lambda: set_slider(50), outputs=[style_strength_slider])
high_button = gr.Button('High').click(fn=lambda: set_slider(100), outputs=[style_strength_slider])
with gr.Group():
output_quality = gr.Checkbox(label='More Realistic', info='Note: If unchecked, the resulting image will have a more artistic flair.', value=True)
submit_button = gr.Button('Submit', variant='primary')
download_button = gr.DownloadButton(label='Download Image', visible=False)
def save_generated_image(img):
output_path = 'generated.jpg'
img.save(output_path)
return output_path
submit_button.click(
fn=inference,
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality],
outputs=[content_and_output]
).then(
fn=save_generated_image,
inputs=[content_and_output],
outputs=[download_button]
).then(
fn=lambda _: gr.update(visible=True),
inputs=[],
outputs=[download_button]
)
content_and_output.change(
fn=lambda _: gr.update(visible=False),
inputs=[content_and_output],
outputs=[download_button]
)
examples = gr.Examples(
examples=[
['./content_images/TajMahal.jpg', 'Starry Night', 75, True],
['./content_images/GoldenRetriever.jpg', 'Lego Bricks', 50, True],
['./content_images/SeaTurtle.jpg', 'Mosaic', 100, True]
],
inputs=[content_and_output, style_dropdown, style_strength_slider, output_quality]
)
# disable queue
demo.queue = False
demo.config['queue'] = False
demo.launch(show_api=False) |