ITO-Master / app.py
jhtonyKoo's picture
update yt_download
46ec003
raw
history blame
13.2 kB
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args
import pyloudnorm as pyln
import tempfile
import os
import pandas as pd
mastering_transfer = MasteringStyleTransfer(args)
def denormalize_audio(audio, dtype=np.int16):
"""
Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
"""
if dtype == np.int16:
audio = np.clip(audio, -1, 1) # Ensure the input is in the range [-1, 1]
return (audio * 32767).astype(np.int16)
elif dtype == np.float32:
return audio.astype(np.float32)
else:
raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")
def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
# Ensure audio is float32
if audio.dtype != np.float32:
audio = audio.astype(np.float32)
# If audio is mono, reshape to (samples, 1)
if audio.ndim == 1:
audio = audio.reshape(-1, 1)
meter = pyln.Meter(sample_rate) # create BS.1770 meter
loudness = meter.integrated_loudness(audio)
loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
return loudness_normalized_audio
def process_youtube_url(url):
try:
audio, sr = download_youtube_audio(url)
return (sr, audio), None
except Exception as e:
return None, f"Error processing YouTube URL: {str(e)}"
def process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
if input_youtube_url:
input_audio, error = process_youtube_url(input_youtube_url)
if error:
return None, None, error
if reference_youtube_url:
reference_audio, error = process_youtube_url(reference_youtube_url)
if error:
return None, None, error
if input_audio is None or reference_audio is None:
return None, None, "Both input and reference audio are required."
return process_audio(input_audio, reference_audio)
def to_numpy_audio(audio):
# Convert output_audio to numpy array if it's a tensor
if isinstance(audio, torch.Tensor):
audio = audio.cpu().numpy()
# check dimension
if audio.ndim == 1:
audio = audio.reshape(-1, 1)
elif audio.ndim > 2:
audio = audio.squeeze()
# Ensure the audio is in the correct shape (samples, channels)
if audio.shape[1] > audio.shape[0]:
audio = audio.transpose(1,0)
return audio
def process_audio(input_audio, reference_audio):
output_audio, predicted_params, sr, normalized_input = mastering_transfer.process_audio(
input_audio, reference_audio
)
param_output = mastering_transfer.get_param_output_string(predicted_params)
# Convert to numpy audio
output_audio = to_numpy_audio(output_audio)
normalized_input = to_numpy_audio(normalized_input)
# Normalize output audio
output_audio = loudness_normalize(output_audio, sr)
# Denormalize the audio to int16
output_audio = denormalize_audio(output_audio, dtype=np.int16)
return (sr, output_audio), param_output, (sr, normalized_input)
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn):
if ito_reference_audio is None:
ito_reference_audio = reference_audio
af_weights = [float(w.strip()) for w in af_weights.split(',')]
ito_config = {
'optimizer': optimizer,
'learning_rate': learning_rate,
'num_steps': num_steps,
'af_weights': af_weights,
'sample_rate': args.sample_rate,
'loss_function': loss_function,
'clap_target_type': clap_target_type,
'clap_text_prompt': clap_text_prompt,
'clap_distance_fn': clap_distance_fn
}
input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
all_results, min_loss_step = mastering_transfer.inference_time_optimization(
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
)
ito_log = ""
loss_values = []
for result in all_results:
ito_log += result['log']
loss_values.append({"step": result['step'], "loss": result['loss']})
# Return the results of the last step
last_result = all_results[-1]
current_output = last_result['audio']
ito_param_output = mastering_transfer.get_param_output_string(last_result['params'])
# Convert to numpy audio
current_output = to_numpy_audio(current_output)
# Loudness normalize output audio
current_output = loudness_normalize(current_output, args.sample_rate)
# Denormalize the audio to int16
current_output = denormalize_audio(current_output, dtype=np.int16)
return (args.sample_rate, current_output), ito_param_output, num_steps, ito_log, pd.DataFrame(loss_values), all_results
def update_ito_output(all_results, selected_step):
selected_result = all_results[selected_step - 1]
current_output = selected_result['audio']
ito_param_output = mastering_transfer.get_param_output_string(selected_result['params'])
# Convert to numpy audio
current_output = to_numpy_audio(current_output)
# Loudness normalize output audio
current_output = loudness_normalize(current_output, args.sample_rate)
# Denormalize the audio to int16
current_output = denormalize_audio(current_output, dtype=np.int16)
return (args.sample_rate, current_output), ito_param_output, selected_result['log']
""" APP display """
with gr.Blocks() as demo:
gr.Markdown("# ITO-Master: Inference Time Optimization for Mastering Style Transfer")
with gr.Row():
gr.Markdown("Interactive demo of Inference Time Optimization (ITO) for Music Mastering Style Transfer. \
The mastering style transfer is performed by a differentiable audio processing model, and the predicted parameters are shown as the output. \
Perform mastering style transfer with an input source audio and a reference mastering style audio. On top of this result, you can perform ITO to optimize the reference embedding $z_{ref}$ to further gain control over the output mastering style.")
gr.Image("ito_snow.png", width=500, height=300, label="ITO pipeline")
gr.Markdown("## Step 1: Mastering Style Transfer")
with gr.Tab("Upload Audio"):
with gr.Row():
input_audio = gr.Audio(label="Source Audio $x_{in}$")
reference_audio = gr.Audio(label="Reference Style Audio $x_{ref}$")
process_button = gr.Button("Process Mastering Style Transfer")
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
with gr.Row():
with gr.Column():
output_audio = gr.Audio(label="Output Audio y'", type='numpy')
normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy')
param_output = gr.Textbox(label="Predicted Parameters", lines=5)
process_button.click(
process_audio,
inputs=[input_audio, reference_audio],
outputs=[output_audio, param_output, normalized_input]
)
with gr.Tab("YouTube Audio"):
with gr.Row():
input_youtube_url = gr.Textbox(label="Input YouTube URL")
reference_youtube_url = gr.Textbox(label="Reference YouTube URL")
with gr.Row():
input_audio_yt = gr.Audio(label="Source Audio (Do not put when using YouTube URL)")
reference_audio_yt = gr.Audio(label="Reference Style Audio (Do not put when using YouTube URL)")
process_button_yt = gr.Button("Process Mastering Style Transfer")
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
with gr.Row():
with gr.Column():
output_audio = gr.Audio(label="Output Audio y'", type='numpy')
normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy')
param_output = gr.Textbox(label="Predicted Parameters", lines=5)
error_message_yt = gr.Textbox(label="Error Message", visible=False)
def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
if len(result) == 3 and isinstance(result[2], str): # Error occurred
return None, None, None, gr.update(visible=True, value=result[2])
return result[0], result[1], result[2], gr.update(visible=False, value="")
process_button_yt.click(
process_and_handle_errors,
inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url],
outputs=[output_audio_yt, param_output_yt, normalized_input, error_message_yt]
)
gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
with gr.Row():
ito_reference_audio = gr.Audio(label="ITO Reference Style Audio $x'_{ref}$ (optional)")
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps for additional optimization")
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
loss_function = gr.Radio(["AudioFeatureLoss", "CLAPFeatureLoss"], label="Loss Function", value="AudioFeatureLoss")
# Audio Feature Loss weights
with gr.Column(visible=True) as audio_feature_weights:
af_weights = gr.Textbox(
label="AudioFeatureLoss Weights (comma-separated)",
value="0.1,0.001,1.0,1.0,0.1",
info="RMS, Crest Factor, Stereo Width, Stereo Imbalance, Bark Spectrum"
)
# CLAP Loss options
with gr.Column(visible=False) as clap_options:
clap_target_type = gr.Radio(["Audio", "Text"], label="CLAP Target Type", value="Audio")
clap_text_prompt = gr.Textbox(label="CLAP Text Prompt", visible=False)
clap_distance_fn = gr.Dropdown(["cosine", "mse", "l1"], label="CLAP Distance Function", value="cosine")
def update_clap_options(loss_function):
if loss_function == "CLAPFeatureLoss":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
loss_function.change(
update_clap_options,
inputs=[loss_function],
outputs=[audio_feature_weights, clap_options]
)
def update_clap_text_prompt(clap_target_type):
return gr.update(visible=clap_target_type == "Text")
clap_target_type.change(
update_clap_text_prompt,
inputs=[clap_target_type],
outputs=[clap_text_prompt]
)
ito_button = gr.Button("Perform ITO")
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
with gr.Row():
with gr.Column():
ito_output_audio = gr.Audio(label="ITO Output Audio")
ito_step_slider = gr.Slider(minimum=1, maximum=100, step=1, label="ITO Step", interactive=True)
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
with gr.Column():
ito_loss_plot = gr.LinePlot(
x="step",
y="loss",
title="ITO Loss Curve",
x_title="Step",
y_title="Loss",
height=300,
width=600,
)
ito_log = gr.Textbox(label="ITO Log", lines=10)
all_results = gr.State([])
ito_button.click(
perform_ito,
inputs=[normalized_input, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn],
outputs=[ito_output_audio, ito_param_output, ito_step_slider, ito_log, ito_loss_plot, all_results]
).then(
update_ito_output,
inputs=[all_results, ito_step_slider],
outputs=[ito_output_audio, ito_param_output, ito_log]
)
ito_step_slider.change(
update_ito_output,
inputs=[all_results, ito_step_slider],
outputs=[ito_output_audio, ito_param_output, ito_log]
)
demo.launch()