File size: 13,185 Bytes
2e66664
 
 
 
c8618b9
2e66664
 
587b58f
64048e9
76df10e
 
043c2d7
2e66664
c8618b9
459a21c
6d70884
 
 
 
 
1a135ff
6d70884
 
 
 
 
 
d48a45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9697a6f
 
 
46ec003
9697a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9523a
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6c0d5
6bbce1b
 
2e66664
 
6fc042a
043c2d7
bb9523a
 
 
043c2d7
bb9523a
043c2d7
 
 
6bbce1b
2e66664
c2d5e4a
6d6c0d5
 
df67096
e30570e
6d6c0d5
 
 
 
 
8c9ee04
 
 
c2d5e4a
 
6d6c0d5
 
 
 
 
 
 
 
b9bf35a
 
 
 
e182234
76df10e
b9bf35a
 
 
e182234
158585c
 
 
 
 
bb9523a
 
158585c
 
 
 
043c2d7
158585c
1a135ff
f5db6d5
f9e9793
158585c
 
 
bb9523a
 
158585c
 
 
 
 
 
6838a44
f5db6d5
 
2e66664
f5db6d5
fea46cb
c9034be
0f4afba
d09ad44
82c2c1f
f5db6d5
c9034be
0a8ab10
2e66664
a990e23
82c2c1f
 
 
bf776b2
db7ccb6
a990e23
 
6bbce1b
d09ad44
fea46cb
e3c9443
6d6c0d5
 
82c2c1f
 
6bbce1b
6d6c0d5
 
9697a6f
 
f9e9793
 
9697a6f
fea46cb
 
9697a6f
 
db7ccb6
9697a6f
 
46ec003
 
 
 
9697a6f
 
 
 
 
 
46ec003
 
9697a6f
 
 
 
46ec003
9697a6f
 
6838a44
e182234
 
d09ad44
e3c9443
c2d5e4a
e182234
 
8c9ee04
cac2c49
 
 
 
 
 
 
 
 
 
 
 
 
278b4aa
8c9ee04
 
 
e298cbd
8c9ee04
e298cbd
8c9ee04
 
 
 
cac2c49
8c9ee04
 
cac2c49
 
 
 
 
 
 
 
e298cbd
e3c9443
db7ccb6
e3c9443
 
 
e182234
f5db6d5
71be77a
e3c9443
043c2d7
 
 
 
 
 
9e8da41
043c2d7
 
9fc25b1
e3c9443
f5db6d5
71be77a
e182234
f9e9793
c2d5e4a
f9e9793
f5db6d5
 
 
 
 
 
 
 
 
 
e182234
 
6d6c0d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import yaml
from inference import MasteringStyleTransfer
from utils import download_youtube_audio
from config import args
import pyloudnorm as pyln
import tempfile
import os
import pandas as pd

mastering_transfer = MasteringStyleTransfer(args)

def denormalize_audio(audio, dtype=np.int16):
    """
    Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
    """
    if dtype == np.int16:
        audio = np.clip(audio, -1, 1)  # Ensure the input is in the range [-1, 1]
        return (audio * 32767).astype(np.int16)
    elif dtype == np.float32:
        return audio.astype(np.float32)
    else:
        raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")

def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
    # Ensure audio is float32
    if audio.dtype != np.float32:
        audio = audio.astype(np.float32)
    
    # If audio is mono, reshape to (samples, 1)
    if audio.ndim == 1:
        audio = audio.reshape(-1, 1)
    
    meter = pyln.Meter(sample_rate)  # create BS.1770 meter
    loudness = meter.integrated_loudness(audio)
    
    loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
    return loudness_normalized_audio

def process_youtube_url(url):
    try:
        audio, sr = download_youtube_audio(url)
        return (sr, audio), None
    except Exception as e:
        return None, f"Error processing YouTube URL: {str(e)}"

def process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
    if input_youtube_url:
        input_audio, error = process_youtube_url(input_youtube_url)
        if error:
            return None, None, error
    
    if reference_youtube_url:
        reference_audio, error = process_youtube_url(reference_youtube_url)
        if error:
            return None, None, error
    
    if input_audio is None or reference_audio is None:
        return None, None, "Both input and reference audio are required."
    
    return process_audio(input_audio, reference_audio)

def to_numpy_audio(audio):
    # Convert output_audio to numpy array if it's a tensor
    if isinstance(audio, torch.Tensor):
        audio = audio.cpu().numpy()
    # check dimension
    if audio.ndim == 1:
        audio = audio.reshape(-1, 1)
    elif audio.ndim > 2:
        audio = audio.squeeze()
    # Ensure the audio is in the correct shape (samples, channels)
    if audio.shape[1] > audio.shape[0]:
        audio = audio.transpose(1,0)
    return audio

def process_audio(input_audio, reference_audio):
    output_audio, predicted_params, sr, normalized_input = mastering_transfer.process_audio(
        input_audio, reference_audio
    )
    
    param_output = mastering_transfer.get_param_output_string(predicted_params)

    # Convert to numpy audio
    output_audio = to_numpy_audio(output_audio)
    normalized_input = to_numpy_audio(normalized_input)
    # Normalize output audio
    output_audio = loudness_normalize(output_audio, sr)
    # Denormalize the audio to int16
    output_audio = denormalize_audio(output_audio, dtype=np.int16)

    return (sr, output_audio), param_output, (sr, normalized_input)

def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn):
    if ito_reference_audio is None:
        ito_reference_audio = reference_audio
    af_weights = [float(w.strip()) for w in af_weights.split(',')]

    ito_config = {
        'optimizer': optimizer,
        'learning_rate': learning_rate,
        'num_steps': num_steps,
        'af_weights': af_weights,
        'sample_rate': args.sample_rate,
        'loss_function': loss_function,
        'clap_target_type': clap_target_type,
        'clap_text_prompt': clap_text_prompt,
        'clap_distance_fn': clap_distance_fn
    }

    input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
    reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
    ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)

    initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)

    all_results, min_loss_step = mastering_transfer.inference_time_optimization(
        input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
    )

    ito_log = ""
    loss_values = []
    for result in all_results:
        ito_log += result['log']
        loss_values.append({"step": result['step'], "loss": result['loss']})
        
    # Return the results of the last step
    last_result = all_results[-1]
    current_output = last_result['audio']
    ito_param_output = mastering_transfer.get_param_output_string(last_result['params'])

    # Convert to numpy audio
    current_output = to_numpy_audio(current_output)
    # Loudness normalize output audio
    current_output = loudness_normalize(current_output, args.sample_rate)
    # Denormalize the audio to int16
    current_output = denormalize_audio(current_output, dtype=np.int16)

    return (args.sample_rate, current_output), ito_param_output, num_steps, ito_log, pd.DataFrame(loss_values), all_results

def update_ito_output(all_results, selected_step):
    selected_result = all_results[selected_step - 1]
    current_output = selected_result['audio']
    ito_param_output = mastering_transfer.get_param_output_string(selected_result['params'])

    # Convert to numpy audio
    current_output = to_numpy_audio(current_output)
    # Loudness normalize output audio
    current_output = loudness_normalize(current_output, args.sample_rate)
    # Denormalize the audio to int16
    current_output = denormalize_audio(current_output, dtype=np.int16)

    return (args.sample_rate, current_output), ito_param_output, selected_result['log']


""" APP display """
with gr.Blocks() as demo:
    gr.Markdown("# ITO-Master: Inference Time Optimization for Mastering Style Transfer")
    with gr.Row():
        gr.Markdown("Interactive demo of Inference Time Optimization (ITO) for Music Mastering Style Transfer. \
                    The mastering style transfer is performed by a differentiable audio processing model, and the predicted parameters are shown as the output. \
                    Perform mastering style transfer with an input source audio and a reference mastering style audio. On top of this result, you can perform ITO to optimize the reference embedding $z_{ref}$ to further gain control over the output mastering style.")
        gr.Image("ito_snow.png", width=500, height=300, label="ITO pipeline")

    gr.Markdown("## Step 1: Mastering Style Transfer")

    with gr.Tab("Upload Audio"):
        with gr.Row():
            input_audio = gr.Audio(label="Source Audio $x_{in}$")
            reference_audio = gr.Audio(label="Reference Style Audio $x_{ref}$")
        
        process_button = gr.Button("Process Mastering Style Transfer")
        gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
        
        with gr.Row():
            with gr.Column():
                output_audio = gr.Audio(label="Output Audio y'", type='numpy')
                normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy')
            param_output = gr.Textbox(label="Predicted Parameters", lines=5)

        process_button.click(
            process_audio, 
            inputs=[input_audio, reference_audio], 
            outputs=[output_audio, param_output, normalized_input]
        )

    with gr.Tab("YouTube Audio"):
        with gr.Row():
            input_youtube_url = gr.Textbox(label="Input YouTube URL")
            reference_youtube_url = gr.Textbox(label="Reference YouTube URL")
        with gr.Row():
            input_audio_yt = gr.Audio(label="Source Audio (Do not put when using YouTube URL)")
            reference_audio_yt = gr.Audio(label="Reference Style Audio (Do not put when using YouTube URL)")
        
        process_button_yt = gr.Button("Process Mastering Style Transfer")
        gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
        
        with gr.Row():
            with gr.Column():
                output_audio = gr.Audio(label="Output Audio y'", type='numpy')
                normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy')
            param_output = gr.Textbox(label="Predicted Parameters", lines=5)
        
        error_message_yt = gr.Textbox(label="Error Message", visible=False)

        def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
            result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
            if len(result) == 3 and isinstance(result[2], str):  # Error occurred
                return None, None, None, gr.update(visible=True, value=result[2])
            return result[0], result[1], result[2], gr.update(visible=False, value="")

        process_button_yt.click(
            process_and_handle_errors, 
            inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url], 
            outputs=[output_audio_yt, param_output_yt, normalized_input, error_message_yt]
        )

    gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
    
    with gr.Row():
        ito_reference_audio = gr.Audio(label="ITO Reference Style Audio $x'_{ref}$ (optional)")
        with gr.Column():
            num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps for additional optimization")
            optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
            learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
            loss_function = gr.Radio(["AudioFeatureLoss", "CLAPFeatureLoss"], label="Loss Function", value="AudioFeatureLoss")

            # Audio Feature Loss weights
            with gr.Column(visible=True) as audio_feature_weights:
                af_weights = gr.Textbox(
                    label="AudioFeatureLoss Weights (comma-separated)",
                    value="0.1,0.001,1.0,1.0,0.1",
                    info="RMS, Crest Factor, Stereo Width, Stereo Imbalance, Bark Spectrum"
                )

            # CLAP Loss options
            with gr.Column(visible=False) as clap_options:
                clap_target_type = gr.Radio(["Audio", "Text"], label="CLAP Target Type", value="Audio")
                clap_text_prompt = gr.Textbox(label="CLAP Text Prompt", visible=False)
                clap_distance_fn = gr.Dropdown(["cosine", "mse", "l1"], label="CLAP Distance Function", value="cosine")

    def update_clap_options(loss_function):
        if loss_function == "CLAPFeatureLoss":
            return gr.update(visible=False), gr.update(visible=True)
        else:
            return gr.update(visible=True), gr.update(visible=False)

    loss_function.change(
        update_clap_options,
        inputs=[loss_function],
        outputs=[audio_feature_weights, clap_options]
    )

    def update_clap_text_prompt(clap_target_type):
        return gr.update(visible=clap_target_type == "Text")

    clap_target_type.change(
        update_clap_text_prompt,
        inputs=[clap_target_type],
        outputs=[clap_text_prompt]
    )

    ito_button = gr.Button("Perform ITO")
    gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')

    with gr.Row():
        with gr.Column():
            ito_output_audio = gr.Audio(label="ITO Output Audio")
            ito_step_slider = gr.Slider(minimum=1, maximum=100, step=1, label="ITO Step", interactive=True)
            ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
        with gr.Column():
            ito_loss_plot = gr.LinePlot(
                x="step",
                y="loss",
                title="ITO Loss Curve",
                x_title="Step",
                y_title="Loss",
                height=300,
                width=600,
            )
            ito_log = gr.Textbox(label="ITO Log", lines=10)

    all_results = gr.State([])

    ito_button.click(
        perform_ito,
        inputs=[normalized_input, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn],
        outputs=[ito_output_audio, ito_param_output, ito_step_slider, ito_log, ito_loss_plot, all_results]
    ).then(
        update_ito_output,
        inputs=[all_results, ito_step_slider],
        outputs=[ito_output_audio, ito_param_output, ito_log]
    )

    ito_step_slider.change(
        update_ito_output,
        inputs=[all_results, ito_step_slider],
        outputs=[ito_output_audio, ito_param_output, ito_log]
    )

demo.launch()