Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model,create_vit_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
with open("class_names_chinese.txt", "r") as f: # reading them in from class_names.txt | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
### 2. Model and transforms preparation ### | |
# Create model | |
effnetb2, effnetb2_transforms = create_effnetb2_model( | |
num_classes=101, # could also use len(class_names) | |
) | |
vit, vit_transforms = create_vit_model( | |
num_classes=101, # could also use len(class_names) | |
) | |
# Load saved weights | |
effnetb2.load_state_dict( | |
torch.load( | |
f="pretrained_effnetb2_feature_extractor_food101_100_percent.pth", | |
map_location=torch.device("cpu"), # load to CPU | |
) | |
) | |
vit.load_state_dict( | |
torch.load( | |
f="pretrained_vit_feature_extractor_food101_100_percent.pth", | |
map_location=torch.device("cpu"), # load to CPU | |
) | |
) | |
### 3. Predict function ### | |
# Create predict function | |
def predict(img) -> Tuple[Dict, float]: | |
"""Transforms and performs a prediction on img and returns prediction and time taken. | |
""" | |
# Start the timer | |
start_time = timer() | |
# Transform the target image and add a batch dimension | |
img_effnetb2 = effnetb2_transforms(img).unsqueeze(0) | |
img_vit = vit_transforms(img).unsqueeze(0) | |
# Put model into evaluation mode and turn on inference mode | |
effnetb2.eval() | |
vit.eval() | |
with torch.inference_mode(): | |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities | |
pred_probs = torch.softmax((effnetb2(img_effnetb2)+vit(img_vit))/2, dim=1) | |
#with torch.inference_mode(): | |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities | |
#pred_probs_vit = torch.softmax(vit(img), dim=1) | |
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
# Return the prediction dictionary and prediction time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article strings | |
#title = "FoodVision Big 🍔👁" | |
description = "训练集使用的food101数据集,其中包含101种不同类型食品,\ | |
[原项目](https://www.learnpytorch.io/09_pytorch_model_deployment/)在测试集上的精度大约为60%,\ | |
我这边主要简单的替换了其中的分类模型,使得精度提到80%以上,同时也进了中文化处理,\ | |
注意此分类器只包含了101个品种的食物,如披萨,饺子,炸薯条,炒饭,巧克力慕斯等等,[详细品类详见此处](https://huggingface.co/spaces/john000z/foodvision_assum/blob/main/class_names_chinese.txt)." | |
article = "Created at [09. PyTorch Model Deployment]." | |
title = "食品分类器 🍔👁" | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=5, label="预测结果"), #Predictions | |
gr.Number(label="预测消耗时间(s)"), #Prediction time (s) | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article, | |
) | |
# Launch the app! | |
demo.launch() | |