zhangjiaheng001
添加中文菜单
211f85c
raw
history blame
3.77 kB
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch
from model import create_effnetb2_model,create_vit_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
with open("class_names_chinese.txt", "r") as f: # reading them in from class_names.txt
class_names = [food_name.strip() for food_name in f.readlines()]
### 2. Model and transforms preparation ###
# Create model
effnetb2, effnetb2_transforms = create_effnetb2_model(
num_classes=101, # could also use len(class_names)
)
vit, vit_transforms = create_vit_model(
num_classes=101, # could also use len(class_names)
)
# Load saved weights
effnetb2.load_state_dict(
torch.load(
f="pretrained_effnetb2_feature_extractor_food101_100_percent.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
vit.load_state_dict(
torch.load(
f="pretrained_vit_feature_extractor_food101_100_percent.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
### 3. Predict function ###
# Create predict function
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img_effnetb2 = effnetb2_transforms(img).unsqueeze(0)
img_vit = vit_transforms(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
effnetb2.eval()
vit.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax((effnetb2(img_effnetb2)+vit(img_vit))/2, dim=1)
#with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
#pred_probs_vit = torch.softmax(vit(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
### 4. Gradio app ###
# Create title, description and article strings
#title = "FoodVision Big 🍔👁"
description = "训练集使用的food101数据集,其中包含101种不同类型食品,\
[原项目](https://www.learnpytorch.io/09_pytorch_model_deployment/)在测试集上的精度大约为60%,\
我这边主要简单的替换了其中的分类模型,使得精度提到80%以上,同时也进了中文化处理,\
注意此分类器只包含了101个品种的食物,如披萨,饺子,炸薯条,炒饭,巧克力慕斯等等,[详细品类详见此处](https://huggingface.co/spaces/john000z/foodvision_assum/blob/main/class_names_chinese.txt)."
article = "Created at [09. PyTorch Model Deployment]."
title = "食品分类器 🍔👁"
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=5, label="预测结果"), #Predictions
gr.Number(label="预测消耗时间(s)"), #Prediction time (s)
],
examples=example_list,
title=title,
description=description,
article=article,
)
# Launch the app!
demo.launch()