A newer version of the Gradio SDK is available:
5.6.0
metadata
title: Diabetic Retinopathy Detection
emoji: 👁️
colorFrom: gray
colorTo: pink
sdk: gradio
sdk_version: 4.32.2
app_file: app.py
pinned: false
license: apache-2.0
Diabetic Retinopathy Detection with AI
Setup
Cloning the repo
git clone https://github.com/SDAIA-KAUST-AI/diabetic-retinopathy-detection.git
Gradio app environment
Install from pip requirements file:
conda create -y -n retinopathy_app python=3.10
conda activate retinopathy_app
pip install -r requirements.txt
python app.py
The app will download 280 MB of files from S3 and launch.
Install manually:
pip install pytorch --index-url https://download.pytorch.org/whl/cpu
pip install gradio
pip install transformers
Training environment
Create conda environment from YAML:
mamba env create -n retinopathy_train -f environment.yml
Download the data from Kaggle or use kaggle API:
pip install kaggle
kaggle competitions download -c diabetic-retinopathy-detection
mkdir retinopathy_data/
unzip diabetic-retinopathy-detection.zip -d retinopathy_data/
Launch training:
conda activate retinopathy_train
python train.py
The trained model will be put into lightning_logs/
.