|
--- |
|
title: Perin |
|
emoji: π |
|
colorFrom: purple |
|
colorTo: green |
|
sdk: gradio |
|
sdk_version: 3.1.7 |
|
app_file: app.py |
|
pinned: false |
|
--- |
|
|
|
This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for structured sentiment analysis in Norwegian language, pre-trained on the [NoReC dataset](https://huggingface.co/datasets/norec). |
|
This model is an implementation of the paper "Direct parsing to sentiment graphs" (Samuel _et al._, ACL 2022). The main repository that also contains the scripts for training the model, can be found on the project [github](https://github.com/jerbarnes/direct_parsing_to_sent_graph). |
|
|
|
The current model uses the 'labeled-edge' graph encoding, and achieves the following results on the NoReC dataset: |
|
|
|
| Unlabeled sentiment tuple F1 | Target F1 | Relative polarity precision | |
|
|:----------------------------:|:----------:|:---------------------------:| |
|
| 0.393 | 0.468 | 0.939 | |
|
|
|
|
|
The model can be easily used for predicting sentiment tuples as follows: |
|
|
|
```python |
|
>>> import model_wrapper |
|
>>> model = model_wrapper.PredictionModel() |
|
>>> model.predict(['vi liker svart kaffe']) |
|
[{'sent_id': '0', |
|
'text': 'vi liker svart kaffe', |
|
'opinions': [{'Source': [['vi'], ['0:2']], |
|
'Target': [['svart', 'kaffe'], ['9:14', '15:20']], |
|
'Polar_expression': [['liker'], ['3:8']], |
|
'Polarity': 'Positive'}]}] |
|
``` |
|
|