Spaces:
Sleeping
Sleeping
import os | |
from datetime import datetime, timedelta | |
from sys import platform | |
from typing import Any, Dict | |
import gradio as gr | |
import pandas as pd | |
from cachetools import TTLCache, cached | |
from diskcache import Cache | |
from dotenv import load_dotenv | |
from httpx import Client | |
from huggingface_hub import DatasetCard, hf_hub_url, list_datasets | |
from tqdm.auto import tqdm | |
from tqdm.contrib.concurrent import thread_map | |
load_dotenv() | |
LIMIT = None | |
CACHE_TIME = 60 * 60 * 12 # 12 hours | |
REMOVE_ORGS = { | |
"HuggingFaceM4", | |
"HuggingFaceBR4", | |
"open-llm-leaderboard", | |
"TrainingDataPro", | |
} | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
USER_AGENT = os.getenv("USER_AGENT") | |
headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT} | |
client = Client( | |
headers=headers, | |
timeout=60, | |
) | |
# LOCAL = False | |
# if platform == "darwin": | |
# LOCAL = True | |
# cache_dir = "cache" if LOCAL else "/data/diskcache" | |
# cache = Cache(cache_dir) | |
cache = TTLCache(maxsize=10, ttl=CACHE_TIME) | |
def get_three_months_ago(): | |
now = datetime.now() | |
return now - timedelta(days=90) | |
def parse_date(date_str): | |
# parse the created date from string 2023-11-17T16:39:54.000Z to datetime | |
return datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S.%fZ") | |
def add_created_data(dataset): | |
_id = dataset._id | |
created = parse_date(dataset.createdAt) | |
dataset_dict = dataset.__dict__ | |
dataset_dict["createdAt"] = created | |
return dataset_dict | |
def get_readme_len(dataset: Dict[str, Any]): | |
try: | |
url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset") | |
resp = client.get(url) | |
if resp.status_code == 200: | |
card = DatasetCard(resp.text) | |
dataset["len"] = len(card.text) | |
return dataset | |
except Exception as e: | |
print(e) | |
return None | |
def check_ds_server_valid(id): | |
url = f"https://datasets-server.huggingface.co/is-valid?dataset={id}" | |
response = client.get(url) | |
if response.status_code != 200: | |
return False | |
try: | |
data = response.json() | |
preview = data.get("preview") | |
return preview is not None | |
except Exception as e: | |
print(e) | |
return False | |
def has_server_preview(dataset): | |
dataset["server_preview"] = check_ds_server_valid(dataset["id"]) | |
return dataset | |
def render_model_hub_link(hub_id): | |
link = f"https://huggingface.co/datasets/{hub_id}" | |
return ( | |
f'<a target="_blank" href="{link}" style="color: var(--link-text-color);' | |
f' text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>' | |
) | |
def get_datasets(): | |
return list( | |
tqdm( | |
iter( | |
list_datasets(limit=LIMIT, full=True, sort="lastModified", direction=-1) | |
) | |
) | |
) | |
def load_data(): | |
datasets = get_datasets() | |
datasets = [add_created_data(dataset) for dataset in tqdm(datasets)] | |
# datasets = [dataset.__dict__ for dataset in tqdm(datasets)] | |
filtered = [ds for ds in datasets if ds["createdAt"] > get_three_months_ago()] | |
ds_with_len = thread_map(get_readme_len, filtered) | |
ds_with_len = [ds for ds in ds_with_len if ds is not None] | |
ds_with_valid_status = thread_map(has_server_preview, ds_with_len) | |
ds_with_valid_status = [ds for ds in ds_with_valid_status if ds is not None] | |
return ds_with_valid_status | |
columns_to_drop = [ | |
"cardData", | |
"gated", | |
"sha", | |
# "paperswithcode_id", | |
"tags", | |
"description", | |
"siblings", | |
"disabled", | |
"_id", | |
"private", | |
"author", | |
"citation", | |
"lastModified", | |
] | |
def prep_dataframe(remove_orgs_and_users=REMOVE_ORGS, columns_to_drop=columns_to_drop): | |
ds_with_len = load_data() | |
if remove_orgs_and_users: | |
ds_with_len = [ | |
ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users | |
] | |
df = pd.DataFrame(ds_with_len) | |
df["id"] = df["id"].apply(render_model_hub_link) | |
if columns_to_drop: | |
df = df.drop(columns=columns_to_drop) | |
df = df.sort_values(by=["likes", "downloads", "len"], ascending=False) | |
return df | |
def filter_df_by_max_age(df, max_age_days=None): | |
df = df.dropna(subset=["createdAt"]) | |
now = datetime.now() | |
if max_age_days is not None: | |
max_date = now - timedelta(days=max_age_days) | |
df = df[df["createdAt"] >= max_date] | |
return df | |
def filter_by_readme_len(df, min_len=None): | |
if min_len is not None: | |
df = df[df["len"] >= min_len] | |
return df | |
def filter_df(max_age_days=None, min_len=None, needs_server_preview: bool = False): | |
df = prep_dataframe() | |
if needs_server_preview: | |
df = df[df["server_preview"] == True] | |
if max_age_days is not None: | |
df = filter_df_by_max_age(df, max_age_days=max_age_days) | |
if min_len is not None: | |
df = filter_by_readme_len(df, min_len=min_len) | |
df = df.sort_values(by=["likes", "downloads", "len"], ascending=False) | |
return df | |
with gr.Blocks() as demo: | |
gr.Markdown("# Recent Datasets on the Hub") | |
gr.Markdown( | |
"Datasets added in the past 90 days with a README.md and some metadata." | |
) | |
with gr.Row(): | |
max_age_days = gr.Slider( | |
label="Max Age (days)", | |
value=7, | |
minimum=0, | |
maximum=90, | |
step=1, | |
interactive=True, | |
) | |
min_len = gr.Slider( | |
label="Minimum README Length", | |
value=300, | |
minimum=0, | |
maximum=1000, | |
step=50, | |
interactive=True, | |
) | |
needs_server_preview = gr.Checkbox( | |
label="Exclude datasets without datasets-server preview?", | |
value=False, | |
interactive=True, | |
) | |
output = gr.DataFrame(filter_df, datatype="markdown", min_width=160 * 2.5, height=1000) | |
max_age_days.input( | |
filter_df, | |
inputs=[max_age_days, min_len, needs_server_preview], | |
outputs=[output], | |
) | |
min_len.input( | |
filter_df, | |
inputs=[max_age_days, min_len, needs_server_preview], | |
outputs=[output], | |
) | |
needs_server_preview.change( | |
filter_df, | |
inputs=[max_age_days, min_len, needs_server_preview], | |
outputs=[output], | |
) | |
demo.launch() | |