mazpie's picture
Initial commit
2d9a728
raw
history blame
13.8 kB
import datetime
import logging
import time
from os.path import join
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from torch.utils.data import ConcatDataset
from dataset.serialize import local_broadcast_process_authkey
from dataset import MetaLoader_rs, create_dataset, create_loader, create_sampler, create_stateful_sampler
from models import *
from tasks_clip.retrieval_utils import evaluation_wrapper
from tasks_clip.shared_utils import get_media_types, setup_model
from utils.basic_utils import MetricLogger, SmoothedValue, setup_seed
from utils.config_utils import setup_main
from utils.distributed import get_rank, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
logger = logging.getLogger(__name__)
def train(
model,
train_loaders,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
data_type,
skip_num=0
):
model.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window=100, fmt="{value:.6f}"))
metric_logger.add_meter("temperature", SmoothedValue(window=100, fmt="{value:.4f}"))
loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
media_types = get_media_types(train_loaders)
for name in loss_names:
for m in media_types:
metric_logger.add_meter(
f"{m}-{name}", SmoothedValue(window=100, fmt="{value:.4f}")
)
header = f"Train Epoch: [{epoch}]"
log_freq = config.log_freq
if config.distributed:
for d in train_loaders:
d.sampler.set_epoch(epoch)
train_loader = MetaLoader_rs(name2loader=dict(list(zip(media_types, train_loaders))), skip_num=skip_num)
model_without_ddp = model.module if config.distributed else model
iterator = metric_logger.log_every(train_loader, log_freq, header)
for i, (media_type, (image, text, idx)) in enumerate(iterator):
image = image.to(device, non_blocking=True)
idx = idx.to(device, non_blocking=True)
text_input = tokenizer(text).to(device)
with torch.cuda.amp.autocast(enabled=config.use_half_precision, dtype=data_type):
loss_dict = model(image, text_input, idx=idx)
loss = sum(loss_dict.values())
if hasattr(config, "deepspeed") and config.deepspeed.enable:
model.backward(loss)
model.step()
else:
if not config.use_half_precision or config.get('use_bf16', True):
optimizer.zero_grad()
loss.backward()
if config.optimizer.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
optimizer.step()
scheduler.step()
else:
optimizer.zero_grad()
scaler.scale(loss).backward()
if config.optimizer.max_grad_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
scaler.step(optimizer)
scaler.update()
scheduler.step()
# logging
for name in loss_names:
value = loss_dict[name]
value = value if isinstance(value, float) else value.item()
metric_logger.update(**{f"{media_type}-{name}": value})
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(temperature=model_without_ddp.temp.item())
if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
logs = metric_logger.get_global_avg_dict()
log_dict_to_wandb(logs, step=global_step, prefix="train/")
global_step += 1
if config.debug and global_step % 20 == 0:
logger.info("debug mode, break training loop")
break
if config.debug and global_step % (2 * log_freq + 3) == 0:
logger.info("debug mode, break training loop")
break
if config.get('save_iter', 0) and global_step % config.save_iter == 0:
if hasattr(config, "deepspeed") and config.deepspeed.enable:
tag = f"ckpt_iter{global_step:02d}.pth"
model.save_checkpoint(config.output_dir, tag=tag, save_latest=False, exclude_frozen_parameters=True)
elif is_main_process():
state_dict = model_without_ddp.state_dict()
param_grad_dict = {
k: v.requires_grad for (k, v) in model_without_ddp.named_parameters()
}
for k in list(state_dict.keys()):
if k in param_grad_dict.keys() and not param_grad_dict[k]:
# delete parameters that do not require gradient
logger.info(f"Not saving {k}")
del state_dict[k]
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_obj, join(config.output_dir, f"ckpt_iter{global_step:02d}.pth"))
# gather the stats from all processes
metric_logger.synchronize_between_processes()
logger.info(f"Averaged stats: {metric_logger.global_avg()}")
return global_step
def setup_dataloaders(config, mode="pt"):
# train datasets, create a list of data loaders
logger.info(f"Creating dataset for {mode}")
train_datasets = create_dataset(f"{mode}_train", config)
media_types = get_media_types(train_datasets)
if config.distributed:
batch_size = [config.inputs.batch_size[k] for k in media_types] # batch_size for each GPU
samplers = create_stateful_sampler(train_datasets, batch_size)
else:
raise NotImplementedError
train_loaders = create_loader(
train_datasets,
samplers,
batch_size=[config.inputs.batch_size[k] for k in media_types],
num_workers=[config.num_workers] * len(media_types),
is_trains=[True] * len(media_types),
collate_fns=[None] * len(media_types),
)
# test datasets, a mapping from dataset name to data loader
test_datasets, test_dataset_names = create_dataset(f"{mode}_eval", config)
test_loaders = create_loader(
test_datasets,
[None] * len(test_datasets),
batch_size=[config.inputs.batch_size_test[d.media_type] for d in test_datasets],
num_workers=[config.num_workers] * len(test_datasets),
is_trains=[False] * len(test_datasets),
collate_fns=[None] * len(test_datasets),
)
test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
return train_loaders, test_name2loaders, media_types
def main(config):
if is_main_process() and config.wandb.enable:
run = setup_wandb(config)
is_pretrain = config.mode == "pt"
logger.info(f"train_file: {config.train_file}")
setup_seed(config.seed + get_rank())
device = torch.device(config.device)
train_loaders, test_name2loaders, train_media_types = setup_dataloaders(
config, mode=config.mode
)
num_steps_per_epoch = sum(len(d) for d in train_loaders)
config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
config.scheduler.num_warmup_steps = num_steps_per_epoch * config.scheduler.warmup_epochs
# set cudnn.benchmark=True only when input size is fixed
# https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
cudnn.benchmark = len(train_media_types) == 1
model_cls = eval(config.model.get('model_cls', 'InternVideo2_CLIP'))
(
model,
model_without_ddp,
optimizer,
scheduler,
scaler,
tokenizer,
start_epoch,
global_step,
) = setup_model(
config,
model_cls=model_cls,
pretrain=is_pretrain,
find_unused_parameters=True,
num_steps_per_epoch=num_steps_per_epoch,
)
if is_main_process() and config.wandb.enable:
wandb.watch(model)
best = 0
best_epoch = 0
if config.get('use_bf16', True):
data_type = torch.bfloat16
else:
data_type = torch.float16
logger.info("Start training")
logger.info(f"Epoch: {start_epoch}")
start_time = time.time()
start_step = start_epoch * num_steps_per_epoch
for epoch in range(start_epoch, config.scheduler.epochs):
if not config.evaluate:
global_step = train(
model,
train_loaders,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
data_type,
skip_num = global_step - start_step
)
# save checkpoint befor evaluation
# only save those with gradient
if hasattr(config, "deepspeed") and config.deepspeed.enable:
if config.get("save_latest", False):
tag = "ckpt_latest.pth"
else:
tag = f"ckpt_{epoch:02d}.pth"
model.save_checkpoint(config.output_dir, tag=tag, save_latest=False, exclude_frozen_parameters=True)
elif is_main_process():
state_dict = model_without_ddp.state_dict()
param_grad_dict = {
k: v.requires_grad for (k, v) in model_without_ddp.named_parameters()
}
for k in list(state_dict.keys()):
if k in param_grad_dict.keys() and not param_grad_dict[k]:
# delete parameters that do not require gradient
logger.info(f"Not saving {k}")
del state_dict[k]
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
if config.get("save_latest", False):
torch.save(save_obj, join(config.output_dir, "ckpt_latest.pth"))
else:
torch.save(save_obj, join(config.output_dir, f"ckpt_{epoch:02d}.pth"))
# evaluation
with torch.cuda.amp.autocast(enabled=config.use_half_precision, dtype=data_type):
eval_res = {}
for test_name, test_loader in test_name2loaders.items():
if test_name not in config.test_types:
logger.info(
f"Skip eval {test_name} split. All test_types {config.test_types}"
)
continue
res = evaluation_wrapper(
model_without_ddp, test_loader, tokenizer, device, config, data_type=data_type, prefix=test_name
)
eval_res.update(res)
# save the best checkpoint
if is_main_process():
# log to wandb
if config.wandb.enable:
for p, v in eval_res.items():
log_dict_to_wandb(v, step=global_step, prefix=p)
if config.stop_key is not None and config.stop_key in eval_res:
cur_r_mean = eval_res[config.stop_key]["r_mean"]
else: # None
cur_r_mean = best + 1 # save the last as the best
eval_res = pd.DataFrame(eval_res)
logger.info(f"Epoch {epoch}")
logger.info(f"\n{eval_res.transpose().to_string(max_cols=30)}")
eval_res.to_json(join(config.output_dir, "eval_res_latest.json"))
if not config.evaluate and cur_r_mean > best:
if not hasattr(config, "deepspeed") or not config.deepspeed.enable:
torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
eval_file = "eval_res_best.json"
eval_res.to_json(join(config.output_dir, eval_file))
best = cur_r_mean
best_epoch = epoch
if hasattr(config, "deepspeed") and config.deepspeed.enable:
r_mean_best = torch.tensor([0.0, 0.0]).to(device)
if is_main_process():
r_mean_best[0] = cur_r_mean
r_mean_best[1] = best
dist.broadcast(r_mean_best, 0)
cur_r_mean, best = r_mean_best[0].item(), r_mean_best[1].item()
if not config.evaluate and cur_r_mean > best:
model.save_checkpoint(config.output_dir, tag="ckpt_best.pth", save_latest=False, exclude_frozen_parameters=True)
if config.evaluate:
break
start_step = global_step
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Training time {total_time_str}")
logger.info(f"best epoch {best_epoch} [config.stop_key {config.stop_key}]")
logger.info(f"Checkpoints and Logs saved at {config.output_dir}")
if is_main_process() and config.wandb.enable:
run.finish()
if __name__ == "__main__":
cfg = setup_main()
local_broadcast_process_authkey()
main(cfg)