mazpie's picture
Initial commit
2d9a728
raw
history blame
10.5 kB
import logging
import torch
from torch import nn
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from torchvision.transforms import InterpolationMode
from .backbones.internvideo2 import InternVideo2, LLaMA, Tokenizer
from .criterions import VTC_VTM_Loss
logger = logging.getLogger(__name__)
class InternVideo2_CLIP(nn.Module):
def __init__(self, config, tokenizer=None, is_pretrain=True):
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.is_pretrain = is_pretrain
# create modules.
if tokenizer is None:
self.tokenizer = Tokenizer(config.model.tokenizer_path)
self.vision_encoder = self.build_vision_encoder()
self.text_encoder = self.build_text_encoder()
# adopt 1 / 100. as in ViCLIP
self.temp = nn.parameter.Parameter(torch.ones([]) * config.model.temp)
self.temp_min = config.model.temp_min
# freeze model
if self.config.model.freeze_vision:
for name, p in self.vision_encoder.named_parameters():
if self.config.model.open_vision_clip_projector and name.startswith('clip_projector'):
logger.info(f"Unfreeze {name}")
else:
logger.info(f"Freeze {name}")
p.requires_grad = False
if self.config.model.freeze_text:
for name, p in self.text_encoder.named_parameters():
if self.config.model.open_text_projection and name.startswith('text_projection'):
logger.info(f"Unfreeze {name}")
elif self.config.model.open_text_lora and 'lora' in name:
logger.info(f"Unfreeze {name}")
else:
logger.info(f"Freeze {name}")
p.requires_grad = False
img_size = self.config.model.vision_encoder.img_size
self.transform = transforms.Compose(
[
transforms.Resize(
(img_size, img_size),
interpolation=InterpolationMode.BICUBIC,
),
transforms.Lambda(lambda x: x.float().div(255.0)),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
# load pretrained models
self.load_checkpoint(
config.model.vision_ckpt_path, config.model.text_ckpt_path,
config.model.get("extra_ckpt_path", None)
)
# criterions
self.clip_loss = VTC_VTM_Loss(False)
def no_weight_decay(self):
ret = {"temp"}
ret.update(
{"vision_encoder." + k for k in self.vision_encoder.no_weight_decay()}
)
# no weight decay for LLM if training
ret.update(
{"text_encoder." + k for k, _ in self.text_encoder.named_parameters()}
)
return ret
@torch.no_grad()
def clip_contrastive_temperature(self):
"""Seems only used during pre-training"""
self.temp.clamp_(min=self.temp_min)
def forward(self, image, text, idx):
"""forward and calculate loss.
Args:
image (torch.Tensor): The input images. Shape: [B,T,C,H,W].
text (dict): TODO
idx (torch.Tensor): TODO
Returns: TODO
"""
self.clip_contrastive_temperature()
vision_embeds = self.encode_vision(image)
text_embeds = self.encode_text(text)
# VTC loss
loss_vtc = self.clip_loss.vtc_loss(
vision_embeds, text_embeds, idx, self.temp, all_gather=True
)
return dict(
loss_vtc=loss_vtc,
)
def encode_vision(self, image, test=False):
"""encode image / videos as features.
Args:
image (torch.Tensor): The input images.
test (bool): Whether testing.
Returns: tuple.
- vision_embeds (torch.Tensor): The features of all patches. Shape: [B,C].
"""
T = image.shape[1]
use_image = True if T == 1 else False
image = image.permute(0, 2, 1, 3, 4) # [B,T,C,H,W] -> [B,C,T,H,W]
vision_embeds = self.vision_encoder(image, use_image=use_image)
return vision_embeds
def encode_text(self, text):
"""encode text.
Args:
text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys:
- input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L].
- attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token.
- other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__".
Returns: tuple.
- text_embeds (torch.Tensor): The features of all tokens. Shape: [B,C].
"""
text_embeds = self.text_encoder(text)
return text_embeds
def build_vision_encoder(self):
"""build vision encoder
Returns: (vision_encoder, vision_layernorm). Each is a `nn.Module`.
"""
vision_encoder = InternVideo2(
in_chans=self.config.model.vision_encoder.in_chans,
patch_size=self.config.model.vision_encoder.patch_size,
img_size=self.config.model.vision_encoder.img_size,
qkv_bias=self.config.model.vision_encoder.qkv_bias,
drop_path_rate=self.config.model.vision_encoder.drop_path_rate,
head_drop_path_rate=self.config.model.vision_encoder.head_drop_path_rate,
embed_dim=self.config.model.vision_encoder.embed_dim,
num_heads=self.config.model.vision_encoder.num_heads,
mlp_ratio=self.config.model.vision_encoder.mlp_ratio,
init_values=self.config.model.vision_encoder.init_values,
qk_normalization=self.config.model.vision_encoder.qk_normalization,
depth=self.config.model.vision_encoder.depth,
use_flash_attn=self.config.model.vision_encoder.use_flash_attn,
use_fused_rmsnorm=self.config.model.vision_encoder.use_fused_rmsnorm,
use_fused_mlp=self.config.model.vision_encoder.use_fused_mlp,
fused_mlp_heuristic=self.config.model.vision_encoder.fused_mlp_heuristic,
attn_pool_num_heads=self.config.model.vision_encoder.attn_pool_num_heads,
clip_embed_dim=self.config.model.vision_encoder.clip_embed_dim,
layerscale_no_force_fp32=self.config.model.vision_encoder.layerscale_no_force_fp32,
num_frames=self.config.model.vision_encoder.num_frames,
tubelet_size=self.config.model.vision_encoder.tubelet_size,
sep_pos_embed=self.config.model.vision_encoder.sep_pos_embed,
use_checkpoint=self.config.model.vision_encoder.use_checkpoint,
checkpoint_num=self.config.model.vision_encoder.checkpoint_num,
)
return vision_encoder
def build_text_encoder(self):
"""build text_encoder and possiblly video-to-text multimodal fusion encoder.
Returns: nn.Module. The text encoder
"""
text_encoder = LLaMA(
use_flash_attn=self.config.model.text_encoder.use_flash_attn,
transformer_width=self.config.model.text_encoder.transformer_width,
llama_path=self.config.model.text_encoder.llama_path,
use_lora=self.config.model.text_encoder.use_lora,
)
return text_encoder
def load_checkpoint(self, vision_ckpt_path=None, text_ckpt_path=None, extra_ckpt_path=None):
assert vision_ckpt_path is not None, "No vision_encoder checkpoint"
assert text_ckpt_path is not None, "No text_encoder checkpoint"
new_ckpt = {}
# load vision_encoder
logger.info(f"Load vision_encoder checkpoint from {vision_ckpt_path}")
vision_ckpt = torch.load(vision_ckpt_path, map_location='cpu')
if 'module' in vision_ckpt.keys():
vision_ckpt = vision_ckpt['module']
elif 'model' in vision_ckpt.keys():
vision_ckpt = vision_ckpt['model']
if self.config.model.get('load_vision_ckpt_from_internvideo2_stage2', False):
from .backbones.internvideo2.pos_embed import interpolate_pos_embed
orig_t_size = self.config.model.get('vision_ckpt_t_size', 4)
interpolate_pos_embed(vision_ckpt, self.vision_encoder, orig_t_size=orig_t_size) # 4 for InternVideo2 stage2
for k, v in vision_ckpt.items():
if k.startswith('vision_encoder.'):
if 'clip_decoder' in k or 'final_clip_decoder' in k:
continue
elif 'clip_pos_embed' in k or 'clip_img_pos_embed' in k or 'img_pos_embed' in k :
continue
else:
new_ckpt[k] = v
else:
continue
else:
for k, v in vision_ckpt.items():
if k.startswith('clip_decoder.') or k.startswith('mae_decoder.') or k.startswith('final_clip_decoder.'):
continue
elif k in ['clip_pos_embed', 'mae_pos_embed']:
continue
else:
new_k = 'vision_encoder.' + k
new_ckpt[new_k] = v
# load text_encoder
logger.info(f"Load text_encoder checkpoint from {text_ckpt_path}")
test_ckpt = torch.load(text_ckpt_path, map_location='cpu')
if 'module' in test_ckpt.keys():
test_ckpt = test_ckpt['module']
for k, v in test_ckpt.items():
if k.startswith('transformer.') or k == 'text_projection':
new_k = "text_encoder." + k
else:
continue
new_ckpt[new_k] = v
# load extra checkpoint
# often when post-pretrain after previous pretraining, thus the keys are same
if extra_ckpt_path is not None:
logger.info(f"Load extra checkpoint from {extra_ckpt_path}")
extra_ckpt = torch.load(extra_ckpt_path, map_location='cpu')
if 'module' in extra_ckpt.keys():
extra_ckpt = extra_ckpt['module']
for k, v in extra_ckpt.items():
new_ckpt[k] = v
msg = self.load_state_dict(new_ckpt, strict=False)
logger.info(msg)